
CS/ECE 374 B Lab 3½ — Solutions Fall 2019

1. Use Thompson’s algorithm to create an NFA for the following regular expressions:
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2. Use the incremental subset construction to build a DFA that accepts the same language as
the following NFAs:

(a)

Example

No ✏-transitions

active thread in a particular state. Thus, to simulate the NFA, the DFA only needs to maintain the current
set of states of the NFA.

The formal construction based on the above idea is as follows. Consider an NFA N = (Q,�, �, s, A).
Define the DFA det(N) = (Q�,�, ��, s�, A�) as follows.

• Q� = P(Q)

• s� = ��N (s, �)

• A� = {X � Q | X � A �= �}

• ��({q1, q2, . . . qk}, a) = ��N (q1, a) � ��N (q2, a) � · · · � ��N (qk, a) or more concisely,

��(X, a) =
�

q�X

��N (q, a)

An example NFA is shown in Figure 4 along with the DFA det(N) in Figure 5.
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Figure 4: NFA N
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Figure 5: DFA det(N) equivalent to N

We will now prove that the DFA defined above is correct. That is

Lemma 4. L(N) = L(det(N))

Proof. Need to show
�w � ��. det(N) accepts w i� N accepts w
�w � ��. ��det(N)(s

�, w) � A� i� ��N (s, w) � A �= �
�w � ��. ��det(N)(s

�, w) � A �= � i� ��N (s, w) � A �= �
Again for the induction proof to go through we need to strengthen the claim as follows.

�w � ��. ��det(N)(s
�, w) = ��N (s, w)

In other words, this says that the state of the DFA after reading some string is exactly the set of states the
NFA could be in after reading the same string.

The proof of the strengthened statement is by induction on |w|.

Base Case If |w| = 0 then w = �. Now

��det(N)(s
�, �) = s� = ��N (s, �) by the defn. of ��det(N) and defn. of s�
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{ q0, q1 }1

0,1

(b)

Incremental construction

Only build states reachable from s 0 = ✏reach(s) the start state of M

Induction Hypothesis Assume inductively that the statement holds �w. |w| < n.

Induction Step Let w be such that |w| = n (for n > 0). Without loss of generality w is of the form ua
with |u| = n � 1 and a � �.

��det(N)(s
�, ua) = ��det(N)(�

�
det(N)(s, u), a) property of �� of DFAs

= ��(��det(N)(s, u), a) property of �� of DFAs

=
�

q���
det(N)

(s,u) �
�
N (q, a) definition of ��

=
�

q���N (s,u) �
�
N (q, a) induction hypothesis on u

= ��N (s, ua) Proposition 1

3.1 Relevant States

The formal definition of the DFA has many states, several of which are unreachable from the initial state
(see Figure 5). To make the algorithm simpler for a human to implement (and for the resulting DFA to be
readable), one can include only the reachable states. To do this,

1. Start by drawing the initial state of the DFA.

2. While there are states with missing transitions, draw the missing transitions creating any new states
that maybe needed.

3. Step 2 is repeated until transitions from every state has been drawn.

4. Figure out which states are final, and mark them appropriately.

The method of adding only relevant states is shown in Figures 6 and 7.
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Figure 6: NFA N�

{q0, q1} {q2, q3}

{q3} {}
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Figure 7: DFA det(N�) with only relevant states

8

�0(X , a) = [q2X�
⇤(q, a)
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(c)
NFA behavior

Nondeterministic Finite Automata

Mahesh Viswanathan

1 Introducing Nondeterminism

Consider the machine shown in Figure 1. Like a DFA it has finitely many states and transitions labeled by
symbols from an input alphabet (in this case {0, 1}). However, it has important di�erences when compared
with the DFA model we have seen.

q� q0 q00 qp

0, 1

0
0

�

1

0, 1

Figure 1: Nondeterministic automaton N

• State q� has two outgoing transitions labeled 0.

• States q0, and q00 have missing transitions. q0 has no transition labeled 1, while q00 has no transition
labeled 0.

• State q0 has a transition that is labeled not by an input symbol in {0, 1} but by �.

This is an example of what is called a nondeterministic finite automaton (NFA). Intuitvely, such a machine
could have many possible computations on a given input. For example, on an input of the form u001v, it
is possible for the machine to reach the accepting state qp by transitioning from q� to q0 after reading u.
Similarly, it is possible for the machine to reach qp also on the input u01v — for this to happen, the machine
stays in q� as it reads u, transitions to q0 on reading 0 after u, transitions to q00 without reading an input
symbol by following the transition labeled �, goes to qp on reading 1, and stays in qp while reading v. On the
other hand, the machine also have other possible computations on both u001v and u01v — it may stay in q�
and never transition out of it; or it may transition to q00 on reading u0 by following the �-transition from q0

and die attempting to take a transition labeled 0 (that doesn’t exist) out of q00. The fact that the machines
behavior is not determined by the input string, is the reason these machines are called nondeterministic.

1.1 Nondeterministic Finite Automata (NFA)

NFAs di�er from DFAs in that (a) on an input symbol a, a given state may of 0, 1, or more than 1 transition
labeled a, and (b) they can take transitions without reading any symbol from the input; these are the
�-transitions 1. These features are captured in the following formal definition of an NFA.

Definition 1. A nondeterministic finite automaton (NFA) is a M = (Q,�, �, s, A) where

• Q is a finite set whose elements are called states,

1Beware: �-transitions are not transitions taken on the symbol “�”. � is not a symbol! They are transitions that are taken
without reading any symbol from the input.

1

Machine on input string w from state q can lead to set of states
(could be empty)

From q✏ on 1

From q✏ on 0

From q0 on ✏

From q✏ on 01

From q00 on 00
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Solution:

{ qϵ }
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{ qϵ, q0, q00 }0
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{ qϵ, qp }1

1

{ qϵ, q0, q00, qp }0
1

0

Work on this later:

4. Use the incremental subset construction to convert the NFAs from part 1 to DFAs
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