1. Construct an NFA that accepts all binary strings that have $a \operatorname{as}$ the third-last character; i.e., $x 1 a b$ for $a, b \in\{0,1\}, x \in\{0,1\}^{*}$

For the next problems, write out a formal definition of the new NFA N^{\prime}.
2. Given an NFA $N=(\Sigma, Q, \delta, s, A)$, construct an NFA N^{\prime} that accepts all prefixes of $L(N)$, i.e., $w \in L\left(N^{\prime}\right) \Leftrightarrow w x \in L(N)$ for some $x \in \Sigma^{*}$.
3. Given an NFA $N=(\Sigma, Q, \delta, s, A)$, construct an NFA N^{\prime} that accepts all suffixes of $L(N)$, i.e., $w \in L\left(N^{\prime}\right) \Leftrightarrow x w \in L(N)$ for some $x \in \Sigma^{*}$.
4. Given an NFA $N=(\Sigma, Q, \delta, s, A)$, construct an NFA N^{\prime} that accepts insert1 $(L(N))$, i.e., strings from $L(N)$ with a 1 inserted somewhere. In other words $x \in L\left(N^{\prime}\right)$ if $x=y 1 z$ for some $y, z \in \Sigma^{*}$ and $y z \in L(N)$.
5. Given an NFA $N=(\Sigma, Q, \delta, s, A)$, construct an NFA N^{\prime} that accepts the reverse of $L(N)$, i.e., $w \in L\left(N^{\prime}\right) \Leftrightarrow w^{R} \in L(N)$.

