1. Construct an NFA that accepts all binary strings that have a 1 as the third-last character; i.e., $x \mathbf{1}ab$ for $a, b \in \{0, 1\}, x \in \{0, 1\}^*$

For the next problems, write out a formal definition of the new NFA N'.

- 2. Given an NFA $N = (\Sigma, Q, \delta, s, A)$, construct an NFA N' that accepts all *prefixes* of L(N), i.e., $w \in L(N') \iff wx \in L(N)$ for some $x \in \Sigma^*$.
- 3. Given an NFA $N = (\Sigma, Q, \delta, s, A)$, construct an NFA N' that accepts all *suffixes* of L(N), i.e., $w \in L(N') \Leftrightarrow xw \in L(N)$ for some $x \in \Sigma^*$.
- 4. Given an NFA $N = (\Sigma, Q, \delta, s, A)$, construct an NFA N' that accepts insert1(L(N)), i.e., strings from L(N) with a 1 inserted somewhere. In other words $x \in L(N')$ if $x = y \mathbf{1}z$ for some $y, z \in \Sigma^*$ and $yz \in L(N)$.
- 5. Given an NFA $N = (\Sigma, Q, \delta, s, A)$, construct an NFA N' that accepts the reverse of L(N), i.e., $w \in L(N') \Leftrightarrow w^R \in L(N)$.