CS/ECE 374 B — Lab 3 - Fall 2019 Solutions

1. Construct an NFA that accepts all binary strings that have a 1 as the third last symbol. I.e., 0000100 and 1111 are in the language, 1010 is not.

Solution:

2. Given an NFA $N=(\Sigma, Q, \delta, s, A)$, construct an NFA N^{\prime} that accepts all prefixes of $L(N)$, i.e., $w \in$ $L\left(N^{\prime}\right) \Leftrightarrow w x \in L(N)$ for some $x \in \Sigma^{*}$.

Solution: Let S be the set of states in Q that are both reachable from s and can reach an accepting state. ${ }^{1}$ Make every state in S accepting; i.e., $N^{\prime}=(\Sigma, Q, \delta, s, S)$.
3. Given an NFA $N=(\Sigma, Q, \delta, s, A)$, construct an NFA N^{\prime} that accepts all suffixes of $L(N)$, i.e., $w \in$ $L\left(N^{\prime}\right) \Leftrightarrow x w \in L(N)$ for some $x \in \Sigma^{*}$.

Solution: Let S be the set of states in Q that are both reachable from s and can reach an accepting state. Create a new start state s_{0} and create an ϵ-transition from s_{0} to every state in S.
I.e., $N^{\prime}=\left(\Sigma, Q \cup\left\{s_{0}\right\}, \delta^{\prime}, s_{0}, A\right)$ where:

$$
\begin{array}{rlr}
\delta^{\prime}\left(s_{0}, \epsilon\right) & =S & \\
\delta^{\prime}\left(s_{0}, c\right) & =\emptyset & \text { for any } c \in \Sigma \\
\delta^{\prime}(s, c) & =\delta(s, c) & \text { for any } c \in \Sigma \cup\{\epsilon\}, s \in Q
\end{array}
$$

Note that the addition of the extra state s_{0} is necessary to avoid the ϵ transition being taken after the NFA takes a series of steps and returns to s.
4. Given an NFA $N=(\Sigma, Q, \delta, s, A)$, construct an NFA N^{\prime} that accepts insert1 $(L(N))$, i.e., strings from $L(N)$ with a 1 inserted somewhere. In other words, $x \in L\left(N^{\prime}\right)$ if $x=y 1 z$ and some $y, z \in \Sigma^{*}$ and $y z \in L(N)$.

Solution: We can essentially have two copies of the state Q, with a transition between them when we see a 1. Formally:

$$
\begin{array}{rlr}
N^{\prime} & =\left(\Sigma, Q \times\{0,1\}, \delta^{\prime},(s, 0), A^{\prime}\right) & \\
A^{\prime} & =\{(q, 1) \mid q \in A\} & \text { where } \\
\delta^{\prime}((q, 0), 1) & =\{(r, 0) \mid r \in \delta(q, 1)\} \cup\{(q, 1)\} & \text { for } q \in Q \\
\delta^{\prime}((q, 0), c) & =\{(r, 0) \mid r \in \delta(q, c)\} & \text { for } q \in Q, c \in \Sigma \cup\{\epsilon\}-\{1\} \\
\delta^{\prime}((q, 1), c) & =\{(r, 1) \mid r \in \delta(q, c)\} & \text { for } q \in Q, c \in \Sigma \cup\{\epsilon\}
\end{array}
$$

5. Given an NFA $N=(\Sigma, Q, \delta, s, A)$, construct an NFA N^{\prime} that accepts the reverse of $L(N)$, i.e., $w \in$ $L\left(N^{\prime}\right) \Leftrightarrow w^{R} \in L(N)$.

Solution: This can be done by reversing every transition, and adding an extra starting state s_{0} with an ϵ-transition to every accepting state. The original start state s becomes the sole accepting state.
$N^{\prime}=\left(\Sigma, Q \cup s_{0}, \delta^{\prime}, s_{0},\{s\}\right)$ where:

$$
\begin{array}{rlr}
\delta^{\prime}\left(s_{0}, \epsilon\right) & =A & \\
\delta^{\prime}\left(s_{0}, c\right) & =\emptyset & \text { for any } c \in \Sigma \\
\delta^{\prime}(s, c) & =\{t \in Q \mid s \in \delta(t, c)\} & \text { for any } c \in \Sigma \cup\{\epsilon\}, s \in Q
\end{array}
$$

