Give regular expressions for each of the following languages over the alphabet $\{0,1\}$.

1. All strings containing the substring 000 .

Solution: $(0+1)^{*} 000(0+1)^{*}$
2. All strings not containing the substring 000 .

Solution: $(1+01+001)^{*}(\varepsilon+0+00)$

Solution: $(\varepsilon+0+00)(1(\varepsilon+0+00))^{*}$
3. All strings in which every run of 0 s has length at least 3 .

Solution: $\left(1+0000^{*}\right)^{*}$

Solution: $(\varepsilon+1)\left(\left(\varepsilon+0000^{*}\right) 1\right)^{*}\left(\varepsilon+0000^{*}\right)$
4. All strings in which 1 does not appear after a substring 000.

Solution: $(1+01+001)^{*} 0^{*}$
5. All strings containing at least three 0 s .

Solution: $(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*}$

Solution (clever): $1^{*} 01^{*} 01^{*} 0(0+1)^{*}$ or $(0+1)^{*} 01^{*} 01^{*} 01^{*}$
6. Every string except 000. [Hint: Don't try to be clever.]

Solution: Every string $w \neq 000$ satisfies one of three conditions: Either $|w|<3$, or $|w|=3$ and $w \neq 000$, or $|w|>3$. The first two cases include only a finite number of strings, so we just list them explicitly. The last case includes all strings of length at least 4.

$$
\begin{gathered}
\varepsilon+0+1+00+01+10+11 \\
+001+010+011+100+101+110+111 \\
+(1+0)(1+0)(1+0)(1+0)(1+0)^{*}
\end{gathered}
$$

Solution (clever): $\varepsilon+0+00+(1+01+001+000(1+0))(1+0)^{*}$
7. All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 1 .

Solution: Equivalently, strings that alternate between 0 s and $1 \mathrm{~s}:(01+10)^{*}(\varepsilon+0+1)$
*8. All strings containing at least two 0 s and at least one 1.

Solution: There are three possibilities for how such a string can begin:

- Start with 00 , then any number of 0 s , then 1 , then anything.
- Start with 01 , then any number of 1 s , then 0 , then anything.
- Start with 1, then a substring with exactly two 0s, then anything.

All together: $000^{*} 1(0+1)^{*}+011^{*} 0(0+1)^{*}+11^{*} 01^{*} 0(0+1)^{*}$
Or equivalently: $\left(000^{*} 1+011^{*} 0+11^{*} 01^{*} 0\right)(0+1)^{*}$

Solution: There are three possibilities for how the three required symbols are ordered:

- Contains a 1 before two $0 \mathrm{~s}: \quad(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*}$
- Contains a 1 between two $0 \mathrm{~s}:(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*}$
- Contains a 1 after two $0 \mathrm{~s}: \quad(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*}$

So putting these cases together, we get the following:

$$
\begin{aligned}
&(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} \\
&+(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} \\
&+(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*}
\end{aligned}
$$

Solution (clever): $(0+1)^{*}\left(101^{*} 0+010+01^{*} 01\right)(0+1)^{*}$
*9. All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 2.
Solution: $\left(0(01)^{*} 1+1(10)^{*} 0\right)^{*} \cdot\left(\varepsilon+0(01)^{*}(0+\varepsilon)+1(10)^{*}(1+\varepsilon)\right)$
\star_{10}. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

Solution: Every string in $\{0,1\}^{*}$ alternates between (possibly empty) blocks of 0 s and individual 1 s ; that is, $\{0,1\}^{*}=\left(0^{*} 1\right)^{*} 0^{*}$. Trivially, every 000 substring is contained in some block of 0 s . Our strategy is to consider which blocks of 0 s contain an even or odd number of 000 substrings.

Let X denote the set of all strings in 0^{*} with an even number of 000 substrings. We easily observe that $X=\left\{0^{n} \mid n=1\right.$ or n is even $\}=0+(00)^{*}$.

Let Y denote the set of all strings in 0^{*} with an odd number of 000 substrings. We easily observe that $Y=\left\{0^{n} \mid n>1\right.$ and n is odd $\}=000(00)^{*}$.

We immediately have $0^{*}=X+Y$ and therefore $\{0,1\}^{*}=((X+Y) 1)^{*}(X+Y)$.
Finally, let L denote the set of all strings in $\{0,1\}^{*}$ with an even number of 000 substrings. A string $w \in\{0,1\}^{*}$ is in L if and only if an odd number of blocks of 0 s in w are in Y; the remaining blocks of 0 s are all in X.

$$
L=\left((X 1)^{*} Y 1 \cdot(X 1)^{*} Y 1\right)^{*}(X 1)^{*} X
$$

Plugging in the expressions for X and Y gives us the following regular expression for L : $\left(\left(\left(0+(00)^{*}\right) 1\right)^{*} \cdot 000(00)^{*} 1 \cdot\left(\left(0+(00)^{*}\right) 1\right)^{*} \cdot 000(00)^{*} 1\right)^{*} \cdot\left(\left(0+(00)^{*}\right) 1\right)^{*} \cdot\left(0+(00)^{*}\right)$

Whew!

