Give regular expressions for each of the following languages over the alphabet {0, 1}.

1. All strings containing the substring 000.

Solution: $(0+1)^*000(0+1)^*$

2. All strings *not* containing the substring **000**.

Solution: $(1 + 01 + 001)^*(\varepsilon + 0 + 00)$

Solution:
$$(\varepsilon + 0 + 00)(\mathbf{1}(\varepsilon + 0 + 00))^*$$

3. All strings in which every run of Θ s has length at least 3.

Solution: $(1 + 0000^*)^*$

Solution:
$$(\varepsilon + 1)((\varepsilon + 0000^*)1)^*(\varepsilon + 0000^*)$$

4. All strings in which **1** does not appear after a substring **000**.

Solution: $(1 + 01 + 001)^*0^*$

5. All strings containing at least three Θ s.

Solution: $(0+1)^*0(0+1)^*0(0+1)^*0(0+1)^*$

Solution (clever): $1^{*}01^{*}0(0+1)^{*}$ or $(0+1)^{*}01^{*}01^{*}01^{*}$

6. Every string except 000. [Hint: Don't try to be clever.]

Solution: Every string $w \neq 000$ satisfies one of three conditions: Either |w| < 3, or |w| = 3 and $w \neq 000$, or |w| > 3. The first two cases include only a finite number of strings, so we just list them explicitly. The last case includes *all* strings of length at least 4.

 $\varepsilon + 0 + 1 + 00 + 01 + 10 + 11$ + 001 + 010 + 011 + 100 + 101 + 110 + 111 + (1+0)(1+0)(1+0)(1+0)(1+0)*

Solution (clever): $\varepsilon + 0 + 00 + (1 + 01 + 001 + 000(1 + 0))(1 + 0)^*$

7. All strings w such that *in every prefix of* w, the number of 0s and 1s differ by at most 1.

Solution: Equivalently, strings that alternate between 0s and 1s: $(01+10)^*(\varepsilon+0+1)$

*8. All strings containing at least two 0s and at least one 1.

Solution: There are three possibilities for how such a string can begin:

- Start with 00, then any number of 0s, then 1, then anything.
- Start with **01**, then any number of **1**s, then **0**, then anything.
- Start with 1, then a substring with exactly two 0s, then anything.

All together: $000^*1(0+1)^* + 011^*0(0+1)^* + 11^*01^*0(0+1)^*$ Or equivalently: $(000^*1 + 011^*0 + 11^*01^*0)(0+1)^*$

Solution: There are three possibilities for how the three required symbols are ordered:

- Contains a 1 before two 0s: $(0+1)^* 1(0+1)^* 0(0+1)^* 0(0+1)^*$
- Contains a 1 between two 0s: $(0+1)^* 0 (0+1)^* 1 (0+1)^* 0 (0+1)^*$
- Contains a 1 after two 0s: $(0+1)^* 0 (0+1)^* 0 (0+1)^* 1 (0+1)^*$

So putting these cases together, we get the following:

 $(0+1)^* 1(0+1)^* 0(0+1)^* 0(0+1)^*$ $+ (0+1)^* 0(0+1)^* 1(0+1)^* 0(0+1)^*$ $+ (0+1)^* 0(0+1)^* 0(0+1)^* 1(0+1)^*$

Solution (clever): $(0+1)^*(101^*0+010+01^*01)(0+1)^*$

*9. All strings *w* such that *in every prefix of w*, the number of **0**s and **1**s differ by at most 2.

Solution:
$$(0(01)^*1 + 1(10)^*0)^* \cdot (\varepsilon + 0(01)^*(0 + \varepsilon) + 1(10)^*(1 + \varepsilon))$$

 \star 10. All strings in which the substring 000 appears an even number of times. (For example, 0001000 and 0000 are in this language, but 00000 is not.)

Solution: Every string in $\{0, 1\}^*$ alternates between (possibly empty) blocks of 0s and individual 1s; that is, $\{0, 1\}^* = (0^*1)^*0^*$. Trivially, every 000 substring is contained in some block of Θ s. Our strategy is to consider which blocks of Θ s contain an even or odd number of 000 substrings.

Let X denote the set of all strings in 0^* with an even number of 000 substrings. We easily observe that $X = \{0^n \mid n = 1 \text{ or } n \text{ is even}\} = 0 + (00)^*$.

Let Y denote the set of all strings in 0^* with an *odd* number of 000 substrings. We easily observe that $Y = \{0^n \mid n > 1 \text{ and } n \text{ is odd}\} = 000(00)^*$.

We immediately have $\mathbf{0}^* = X + Y$ and therefore $\{\mathbf{0}, \mathbf{1}\}^* = ((X + Y)\mathbf{1})^*(X + Y)$.

Finally, let L denote the set of all strings in $\{0, 1\}^*$ with an even number of 000 substrings. A string $w \in \{0, 1\}^*$ is in L if and only if an odd number of blocks of 0s in w are in *Y*; the remaining blocks of Θ s are all in *X*.

$$L = ((X1)^*Y1 \cdot (X1)^*Y1)^* (X1)^*X$$

Plugging in the expressions for X and Y gives us the following regular expression for L:

$$\left(\left((0+(00)^*)\mathbf{1}\right)^*\cdot 000(00)^*\mathbf{1}\cdot \left((0+(00)^*)\mathbf{1}\right)^*\cdot 000(00)^*\mathbf{1}\right)^*\cdot \left((0+(00)^*)\mathbf{1}\right)^*\cdot (0+(00)^*)$$

Whew!

Whew!