1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- InPUT: A CNF formula φ with n variables $x_{1}, x_{2}, \ldots, x_{n}$.
- Output: True if there is an assignment of True or False to each variable that satisfies φ.

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- Input: A CNF formula φ with n variables x_{1}, \ldots, x_{n}.
- Output: A truth assignment to the variables that satisfies φ, or None if there is no satisfying assignment.
[Hint: You can use the magic box more than once.]

Solution: For any CNF formula φ with variables x_{1}, \ldots, x_{n}, let $\varphi_{x_{i}=1}$ be the CNF formula obtained from φ by setting x_{i} to True and simplifying the formula; if x_{i} is a literal in a clause C we remove the clause C from the formula, and if $\neg x_{i}$ is a literal in a clause C we remove the $\neg x_{i}$ from the clause (note that if C contains only $\neg x_{i}$ then we obtain an empty clause which we interpret as not being satisfiable by any assignment). Similarly, let $\varphi_{x_{i}=0}$ be the CNF formula obtained from φ by setting x_{i} to FALSE and simplifying.

Suppose $\operatorname{Sat}(\varphi)$ returns True if φ is satisfiable and False otherwise. Then the following algorithm constructs a satisfying assignment for φ or correctly reports that no such assignment exists.

```
SATASSIGNMENT(\varphi):
    if SAT (\varphi)= FALSE
        return NoNE
    for }i\leftarrow1\mathrm{ to }
        if SAT( }\mp@subsup{\varphi}{\mp@subsup{x}{i}{}=1}{}
                \varphi}\leftarrow\mp@subsup{\varphi}{\mp@subsup{x}{i}{}=1}{
                A[i]}\leftarrow\mathrm{ TruE
            else
                \varphi}\leftarrow\mp@subsup{\varphi}{\mp@subsup{x}{i}{}=0}{
                A[i]}\leftarrow\mathrm{ FALSE
    return }A[1..n
```

The correctness of this algorithm follows by induction from the following observation:

Claim 1. The CNF formula $\varphi_{x_{i}=1}$ is satisfiable if and only if φ has a satisfying assignment where $x_{i}=$ TruE.

Proof: First, if $\varphi_{x_{i}=1}$ has a satisfying assignment, then we can augment that satisfying assignment by setting $x_{i}=$ True and this will satisfy φ (note that the only clauses we removed from φ to obtain $\varphi_{x_{i}=1}$ have x_{i} in them, and hence setting $x_{i}=$ TRUE will satisfy all those clauses).

On the other hand, if φ has a satisfying assignment where $x_{i}=$ True, then that assignment restricted to the variables other than x_{i} will satisfy $\varphi_{x_{i}=1}$; the reasoning is tedious.

The algorithm runs in polynomial time. Specifically, suppose Sat (φ) runs in $O\left(N^{c}\right)$ time, where N the total size of φ (sum of the clause sizes). Then $\operatorname{SatAssignment}(\varphi)$ runs in time $O\left(n N^{c}\right)$ since the formula size is only decreasing in each iteration and there are at most n iterations.
2. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices in S are connected by an edge in G. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph G and an integer k.
- Output: True if G has an independent set of size k, and False otherwise.
(a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:
- Input: An undirected graph G.
- Output: The size of the largest independent set in G.
[Hint: You've seen this problem before.]
Solution: Suppose $\operatorname{IndSet}(V, E, k)$ returns True if the graph (V, E) has an independent set of size k, and False otherwise. Then the following algorithm returns the size of the largest independent set in G :

```
MaxIndSetSize( }V,E)
    for }k\leftarrow1\mathrm{ to }
        if IndSEt( }V,E,k+1)=\operatorname{FalSE
            return }
```

A graph with n vertices cannot have an independent set of size larger than n, so this algorithm must return a value. If G has an independent set of size k, then it also has an independent set of size $k-1$, so the algorithm is correct.

The algorithm clearly runs in polynomial time. Specifically, if $\operatorname{IndSet}(V, E, k)$ runs in $O\left((V+E)^{c}\right)$ time, then $\operatorname{MaxIndSETSize}(V, E)$ runs in $O\left((V+E)^{c+1}\right)$ time.

Yes, we could have used binary search instead of linear search. Whatever.
(b) Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:

- Input: An undirected graph G.
- Output: An independent set in G of maximum size.

Solution (delete vertices): I'll use the algorithm $\operatorname{MaxIndSETSize}(V, E)$ from part (a) as a black box instead. Let $G-v$ denote the graph obtained from G by deleting vertex v, and let $G-N(v)$ denote the graph obtained from G by deleting v and all neighbors of v.

```
MaxIndSET( \(G\) ):
    \(S \leftarrow \varnothing\)
    \(k \leftarrow \operatorname{MaxIndSetSize}(G)\)
    for all vertices \(v\) of \(G\)
        if MaxIndSetSize \((G-v)=k\)
            \(G \leftarrow G-v\)
        else
            \(G \leftarrow G-N(v)\)
            add \(v\) to \(S\)
    return \(S\)
```

Correctness of this algorithm follows inductively from the following claims:
Claim 2. MaxIndSetSize $(G-v)=k$ if and only if G has an independent set of size k that excludes v.

Proof: Every independent set in $G-v$ is also an independent set in G; it follows that MaxIndSEtSize $(G-v) \leq k$.

Suppose G has an independent set S of size k that does excludes v. Then S is also an independent set of size k in $G-v$, so MaxIndSetSize $(G-v)$ is at least k, and therefore equal to k.

On the other hand, suppose $G-v$ has an independent set S of size k. Then S is also a maximum independent set of G (because $|S|=k$) that excludes v.

The algorithm clearly runs in polynomial time.

Solution (add edges): I'll use the algorithm $\operatorname{MaxIndSetSize}(V, E)$ from part (a) as a black box instead. Let $G+u v$ denote the graph obtained from G by adding edge $u v$.

```
MaxIndSET( \(G\) ):
    \(k \leftarrow \operatorname{MaxIndSetSize}(G)\)
    if \(k=1\)
        return any vertex
    for all vertices \(u\)
        for all vertices \(v\)
            if \(u \neq v\) and \(u v\) is not an edge
                        if MaxIndSetSize \((G+u v)=k\)
                        \(G \leftarrow G+u v\)
    \(S \leftarrow \varnothing\)
    for all vertices \(v\)
        if \(\operatorname{deg}(v)<V-1\)
            add \(v\) to \(S\)
    return \(S\)
```

The algorithms adds every edge it can without changing the maximum independent set size. Let G^{\prime} denote the final graph. Any independent set in G^{\prime} is also an independent set in the original input graph G. Moreover, the largest independent set in G^{\prime} is also a largest independent set in G. Thus, to prove the algorithm correct, we need to prove the following claims about the final graph G^{\prime} :

Claim 3. The maximum independent set in G^{\prime} is unique.
Proof: Suppose the final graph G^{\prime} has more than two maximum independent sets A and B. Pick any vertex $u \in A \backslash B$ and any other vertex $v \in A$. The set B is still an independent set in the graph $G^{\prime}+u v$. Thus, when the algorithm considered edge $u v$, it would have added $u v$ to the graph, contradicting the assumption that A is an independent set.

Claim 4. Suppose $k>1$. The unique maximum independent set of G^{\prime} contains vertex v if and only if $\operatorname{deg}(v)<V-1$.

Proof: Let S be the unique maximum independent set of G^{\prime}, and let v be any vertex of G. If $v \in S$, then v has degree at most $V-k<V-1$, because v is disconnected from every other vertex in S.

On the other hand, suppose $\operatorname{deg}(v)<V-1$ but $v \notin S$. Then there must be at least vertex u such that $u v$ is not an edge in G^{\prime}. Because $v \notin S$, the set S is still an independent set in $G^{\prime}+u v$. Thus, when the algorithm considered edge $u v$, it would have added $u v$ to the graph, and we have a contradiction.

The algorithm clearly runs in polynomial time.

To think about later:

3. Formally, a proper coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1,2, \ldots, k\}$, for some integer k, such that $c(u) \neq c(v)$ for all $u v \in E$. Less formally, a valid coloring assigns each vertex of G a color, such that every edge in G has endpoints with different colors. The chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph G and an integer k.
- Output: True if G has a proper coloring with k colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following coloring problem in polynomial time:

- Input: An undirected graph G.
- Output: A valid coloring of G using the minimum possible number of colors.
[Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.]

Solution: First we build an algorithm to compute the minimum number of colors in any valid coloring.

```
CHROMATICNUMBER(G):
    for }k\leftarrowV\mathrm{ down to 1
        if Colorable( }G,k-1)=\textrm{False
                return }
```

Given a graph $G=(V, E)$ with n vertices $v_{1}, v_{2}, \ldots, v_{n}$, the following algorithm computes an array color $[1 . . n]$ describing a valid coloring of G with the minimum number of colors.

```
COLORING(G):
    k\leftarrowChromaticNumber (G)
    <<_ add a disjoint clique of size k->>
    H}\leftarrow
    for }c\leftarrow1\mathrm{ to }
        add vertex }\mp@subsup{z}{c}{}\mathrm{ to }
        for }i\leftarrow1\mathrm{ to }c-
            add edge }\mp@subsup{z}{i}{}\mp@subsup{z}{c}{}\mathrm{ to }
    <<__ for each vertex, try each color -_>>
    for }i\leftarrow1\mathrm{ to n
        for }c\leftarrow1\mathrm{ to }
            add edge }\mp@subsup{v}{i}{}\mp@subsup{z}{c}{}\mathrm{ to }
        for }c\leftarrow1\mathrm{ to }
            remove edge }\mp@subsup{v}{i}{}\mp@subsup{z}{c}{}\mathrm{ from }
            if Colorable ( }H,k)=\mathrm{ True
                        color [i]}\leftarrow
                        break inner loop
            add edge }\mp@subsup{v}{i}{}\mp@subsup{z}{c}{}\mathrm{ from }
    return color[1 ..n]
```

In any k-coloring of H, the new vertices z_{1}, \ldots, z_{k} must have k distinct colors, because every pair of those vertices is connected. We assign color $[i] \leftarrow c$ to indicate that there is a k-coloring of H in which v_{i} has the same color as z_{c}. When the algorithm terminates, color [$1 . . n$] describes a valid k-coloring of G.

To prove that the algorithm is correct, we must prove that for all i, when the i th iteration of the outer loop ends, G has a valid k-coloring that is consistent with the partial coloring color $[1 . . i]$. Fix an integer i. The inductive hypothesis implies that when the i th iteration of the outer loop begins, G has a k-coloring consistent with the first $i-1$ assigned colors. (The base case $i=0$ is trivial.) If we connect v_{i} to every new vertices except z_{c}, then v_{i} must have the same color as z_{c} in any valid k-coloring. Thus, the call to Colorable inside the inner loop returns True if and only if H has a k-coloring in which v_{i} has the same color as z_{c} (and the previous $i-1$ vertices are also colored). So Colorable must return True during the second inner loop, which completes the inductive proof.

This algorithm makes $O(k n)=O\left(n^{2}\right)$ calls to Colorable, and therefore runs in polynomial time.

