1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input:** A CNF formula \(\varphi \) with \(n \) variables \(x_1, x_2, \ldots, x_n \).
- **Output:** True if there is an assignment of True or False to each variable that satisfies \(\varphi \).

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- **Input:** A CNF formula \(\varphi \) with \(n \) variables \(x_1, \ldots, x_n \).
- **Output:** A truth assignment to the variables that satisfies \(\varphi \), or None if there is no satisfying assignment.

[Hint: You can use the magic box more than once.]

Solution: For any CNF formula \(\varphi \) with variables \(x_1, \ldots, x_n \), let \(\varphi_{x_i=1} \) be the CNF formula obtained from \(\varphi \) by setting \(x_i \) to True and simplifying the formula; if \(x_i \) is a literal in a clause \(C \) we remove the clause \(C \) from the formula, and if \(\neg x_i \) is a literal in a clause \(C \) we remove the \(\neg x_i \) from the clause (note that if \(C \) contains only \(\neg x_i \) then we obtain an empty clause which we interpret as not being satisfiable by any assignment). Similarly, let \(\varphi_{x_i=0} \) be the CNF formula obtained from \(\varphi \) by setting \(x_i \) to False and simplifying.

Suppose \(\text{Sat}(\varphi) \) returns True if \(\varphi \) is satisfiable and False otherwise. Then the following algorithm constructs a satisfying assignment for \(\varphi \) or correctly reports that no such assignment exists.

```plaintext
SatAssignment(\varphi):
if \( \text{Sat}(\varphi) = \text{False} \)
    return None
for \( i \leftarrow 1 \) to \( n \)
    if \( \text{Sat}(\varphi_{x_i=1}) \)
        \( \varphi' \leftarrow \varphi_{x_i=1} \)
        \( A[i] \leftarrow \text{True} \)
    else
        \( \varphi' \leftarrow \varphi_{x_i=0} \)
        \( A[i] \leftarrow \text{False} \)
return \( A[1 \ldots n] \)
```

The correctness of this algorithm follows by induction from the following observation:

Claim 1. The CNF formula \(\varphi_{x_i=1} \) is satisfiable if and only if \(\varphi \) has a satisfying assignment where \(x_i = \text{True} \).

Proof: First, if \(\varphi_{x_i=1} \) has a satisfying assignment, then we can augment that satisfying assignment by setting \(x_i = \text{True} \) and this will satisfy \(\varphi \) (note that the only clauses we removed from \(\varphi \) to obtain \(\varphi_{x_i=1} \) have \(x_i \) in them, and hence setting \(x_i = \text{True} \) will satisfy all those clauses).

On the other hand, if \(\varphi \) has a satisfying assignment where \(x_i = \text{True} \), then that assignment restricted to the variables other than \(x_i \) will satisfy \(\varphi_{x_i=1} \); the reasoning is tedious.

\[\Box\]
The algorithm runs in polynomial time. Specifically, suppose $\text{Sat}(\varphi)$ runs in $O(N^c)$ time, where N the total size of φ (sum of the clause sizes). Then $\text{SatAssignment}(\varphi)$ runs in time $O(nN^c)$ since the formula size is only decreasing in each iteration and there are at most n iterations.
2. An **independent set** in a graph G is a subset S of the vertices of G, such that no two vertices in S are connected by an edge in G. Suppose you are given a magic black box that somehow answers the following decision problem *in polynomial time*:

- **Input**: An undirected graph G and an integer k.
- **Output**: True if G has an independent set of size k, and False otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem *in polynomial time*:

- **Input**: An undirected graph G.
- **Output**: The size of the largest independent set in G.

[Hint: You've seen this problem before.]

Solution: Suppose $\text{IndSet}(V, E, k)$ returns True if the graph (V, E) has an independent set of size k, and False otherwise. Then the following algorithm returns the size of the largest independent set in G:

```
\text{MaxIndSetSize}(V, E):
  \text{for } k \leftarrow 1 \text{ to } V
    \text{if } \text{IndSet}(V, E, k + 1) = \text{False}
      \text{return } k
```

A graph with n vertices cannot have an independent set of size larger than n, so this algorithm must return a value. If G has an independent set of size k, then it also has an independent set of size $k - 1$, so the algorithm is correct.

The algorithm clearly runs in polynomial time. Specifically, if $\text{IndSet}(V, E, k)$ runs in $O((V + E)^c)$ time, then $\text{MaxIndSetSize}(V, E)$ runs in $O((V + E)^{c+1})$ time.

Yes, we could have used binary search instead of linear search. Whatever. ■
(b) Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:

- **INPUT**: An undirected graph G.
- **OUTPUT**: An independent set in G of maximum size.

Solution (delete vertices): I’ll use the algorithm $\text{MaxIndSetSize}(V, E)$ from part (a) as a black box instead. Let $G - v$ denote the graph obtained from G by deleting vertex v, and let $G - N(v)$ denote the graph obtained from G by deleting v and all neighbors of v.

```plaintext
MaxIndSet(G):
S ← ∅
k ← MaxIndSetSize(G)
for all vertices v of G
    if MaxIndSetSize(G - v) = k
        G ← G - v
    else
        G ← G - N(v)
        add v to S
return S
```

Correctness of this algorithm follows inductively from the following claims:

Claim 2. $\text{MaxIndSetSize}(G - v) = k$ if and only if G has an independent set of size k that excludes v.

Proof: Every independent set in $G - v$ is also an independent set in G; it follows that $\text{MaxIndSetSize}(G - v) \leq k$.

Suppose G has an independent set S of size k that does excludes v. Then S is also an independent set of size k in $G - v$, so $\text{MaxIndSetSize}(G - v)$ is at least k, and therefore equal to k.

On the other hand, suppose $G - v$ has an independent set S of size k. Then S is also a maximum independent set of G (because $|S| = k$) that excludes v. □

The algorithm clearly runs in polynomial time.

Solution (add edges): I’ll use the algorithm $\text{MaxIndSetSize}(V, E)$ from part (a) as a black box instead. Let $G + uv$ denote the graph obtained from G by adding edge uv.

```plaintext
MaxIndSet(G):
k ← MaxIndSetSize(G)
if k = 1
    return any vertex
for all vertices u
    for all vertices v
        if $u \neq v$ and $uv$ is not an edge
            if MaxIndSetSize(G + uv) = k
                G ← G + uv
S ← ∅
for all vertices v
    if deg(v) < V - 1
        add v to S
return S
```
The algorithm adds every edge it can without changing the maximum independent set size. Let G' denote the final graph. Any independent set in G' is also an independent set in the original input graph G. Moreover, the largest independent set in G' is also a largest independent set in G. Thus, to prove the algorithm correct, we need to prove the following claims about the final graph G':

Claim 3. The maximum independent set in G' is unique.

Proof: Suppose the final graph G' has more than two maximum independent sets A and B. Pick any vertex $u \in A \setminus B$ and any other vertex $v \in A$. The set B is still an independent set in the graph $G' + uv$. Thus, when the algorithm considered edge uv, it would have added uv to the graph, contradicting the assumption that A is an independent set.

Claim 4. Suppose $k > 1$. The unique maximum independent set of G' contains vertex v if and only if $\text{deg}(v) < V - 1$.

Proof: Let S be the unique maximum independent set of G', and let v be any vertex of G. If $v \in S$, then v has degree at most $V - k < V - 1$, because v is disconnected from every other vertex in S.

On the other hand, suppose $\text{deg}(v) < V - 1$ but $v \notin S$. Then there must be at least vertex u such that uv is not an edge in G'. Because $v \notin S$, the set S is still an independent set in $G' + uv$. Thus, when the algorithm considered edge uv, it would have added uv to the graph, and we have a contradiction.

The algorithm clearly runs in polynomial time.
To think about later:

3. Formally, a **proper coloring** of a graph \(G = (V, E) \) is a function \(c: V \rightarrow \{1, 2, \ldots, k\} \), for some integer \(k \), such that \(c(u) \neq c(v) \) for all \(uv \in E \). Less formally, a valid coloring assigns each vertex of \(G \) a color, such that every edge in \(G \) has endpoints with different colors. The **chromatic number** of a graph is the minimum number of colors in a proper coloring of \(G \).

 Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

 - **INPUT:** An undirected graph \(G \) and an integer \(k \).
 - **OUTPUT:** True if \(G \) has a proper coloring with \(k \) colors, and False otherwise.

 Using this black box as a subroutine, describe an algorithm that solves the following **coloring problem** in polynomial time:

 - **INPUT:** An undirected graph \(G \).
 - **OUTPUT:** A valid coloring of \(G \) using the minimum possible number of colors.

 [Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.]

 Solution: First we build an algorithm to compute the minimum number of colors in any valid coloring.

   ```
   CHROMATICNUMBER(G):
   for k ← V down to 1
     if COLORABLE(G, k - 1) = False
       return k
   ```

 Given a graph \(G = (V, E) \) with \(n \) vertices \(v_1, v_2, \ldots, v_n \), the following algorithm computes an array \(\text{color}[1..n] \) describing a valid coloring of \(G \) with the minimum number of colors.

   ```
   COLORING(G):
   k ← CHROMATICNUMBER(G)
   \langle—— add a disjoint clique of size \( k \) ——\rangle
   H ← G
   for c ← 1 to k
     add vertex \( z_c \) to \( G \)
     for i ← 1 to c - 1
       add edge \( z_i z_c \) to \( H \)
   \langle—— for each vertex, try each color ——\rangle
   for i ← 1 to n
     for c ← 1 to k
       add edge \( v_i z_c \) to \( H \)
     for c ← 1 to k
       remove edge \( v_i z_c \) from \( H \)
       if COLORABLE(H, k) = True
         \( \text{color}[i] \leftarrow c \)
         break inner loop
       add edge \( v_i z_c \) from \( H \)
   return \( \text{color}[1..n] \)
   ```
In any \(k \)-coloring of \(H \), the new vertices \(z_1, \ldots, z_k \) must have \(k \) distinct colors, because every pair of those vertices is connected. We assign \(\text{color}[i] \leftarrow c \) to indicate that there is a \(k \)-coloring of \(H \) in which \(v_i \) has the same color as \(z_c \). When the algorithm terminates, \(\text{color}[1..n] \) describes a valid \(k \)-coloring of \(G \).

To prove that the algorithm is correct, we must prove that for all \(i \), when the \(i \)th iteration of the outer loop ends, \(G \) has a valid \(k \)-coloring that is consistent with the partial coloring \(\text{color}[1..i] \). Fix an integer \(i \). The inductive hypothesis implies that when the \(i \)th iteration of the outer loop begins, \(G \) has a \(k \)-coloring consistent with the first \(i - 1 \) assigned colors. (The base case \(i = 0 \) is trivial.) If we connect \(v_i \) to every new vertices except \(z_c \), then \(v_i \) must have the same color as \(z_c \) in any valid \(k \)-coloring. Thus, the call to \textsc{Colorable} inside the inner loop returns \text{True} if and only if \(H \) has a \(k \)-coloring in which \(v_i \) has the same color as \(z_c \) (and the previous \(i - 1 \) vertices are also colored). So \textsc{Colorable} must return \text{True} during the second inner loop, which completes the inductive proof.

This algorithm makes \(O(kn) = O(n^2) \) calls to \textsc{Colorable}, and therefore runs in polynomial time.

\[\blacksquare \]