
Homework 9

CS/ECE 374 B

Due 8 p.m. Tuesday, December 3

• Remember that if you use a greedy algorithm, you must prove that it will always arrive at an optimal solution

• Not all the questions in this set can be solved with a greedy algorithm.

• Make sure that you analyze your algorithms complexity and that your algorithms are efficient; solutions
slower than the reference solution will lose points.

Question 1: Fueling Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) You are driving along a highway with refueling stations. Each station is at distance D[i] from your
starting point. Your car holds enough gas to travel up to 100 miles before refueling. Assume that you
start out with an empty tank, but there is a refueling station at your starting point (i.e., D[0] = 0).
Assume, likewise, that there is a fueling station at your destination, D[n]. Design and analyze an efficient
algorithm that computes the minimum the number of refueling stops you have to make to reach your
destination, or return∞ if this is impossible.

(b) Now suppose that you have a choice of routes to get to your destination. The road network is represented
as an undirected graph G = (V, E) with weighted edges representing road segments. Fueling stations are
located at some of the crossroads (i.e., vertices), so each vertex has a flag to specify whether it contains a
fueling station or not. Design and analyze an efficient algorithm to compute the minimum number of
refueling stops you have to make to travel from a given source s to a destination d. Again, your car can
travel up to 100 miles before refueling, and you can assume that both s and d have a refueling stop at
them.

Question 2: Zapping Balloons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solve question 25, parts (a), (b), and (c), from chapter 4 in the textbook. Do not solve part (d).

Question 3: Stacking Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solve question 21, parts (a), (b), and (c), from chapter 4 in the textbook.

Solved Problem

Question 4: Interval Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solve question 3 in chapter 4 of the textbook

Solution: There are two basic observations motivating the solution:

1. The interval that starts first must be included in the cover
2. When deciding between two intervals that start at the same time
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(c) Describe and analyze an algorithm that always computes an optimal
schedule. [Hint: Your algorithm will not be greedy.]

�. Let X be a set of n intervals on the real line. We say that a subset of intervals
Y ✓ X covers X if the union of all intervals in Y is equal to the union of all
intervals in X . The size of a cover is just the number of intervals.

Describe and analyze an e�cient algorithm to compute the smallest
cover of X . Assume that your input consists of two arrays L[1 .. n] and
R[1 .. n], representing the left and right endpoints of the intervals in X . If
you use a greedy algorithm, you must prove that it is correct.

A set of intervals, with a cover (shaded) of size 7.

�. Let X be a set of n intervals on the real line. We say that a set P of points
stabs X if every interval in X contains at least one point in P. Describe and
analyze an e�cient algorithm to compute the smallest set of points that
stabs X . Assume that your input consists of two arrays L[1 .. n] and R[1 .. n],
representing the left and right endpoints of the intervals in X . As usual, If
you use a greedy algorithm, you must prove that it is correct.
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A set of intervals stabbed by four points (shown here as vertical segments)

�. Let X be a set of n intervals on the real line. A proper coloring of X assigns a
color to each interval, so that any two overlapping intervals are assigned
di�erent colors. Describe and analyze an e�cient algorithm to compute the
minimum number of colors needed to properly color X . Assume that your
input consists of two arrays L[1 .. n] and R[1 .. n], representing the left and
right endpoints of the intervals in X . As usual, if you use a greedy algorithm,
you must prove that it is correct.
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A proper coloring of a set of intervals using �ve colors.
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The first observation means that in the figure the first interval we must add to the cover is interval (1). We
can then remove any part of any interval that is covered by (1) (shown in grey). Intervals (2) and (4) now
completely disappear, while for intervals (3) and (5) we adjust the start time to be the ending time of interval
(1) (dashed line). We now apply observation 2 to select interval (3) out of these, and continue.

We can turn this into an algorithm below. Note that it just implements the strategy above, most of the
complexity is in bookkeeping. In particular, we need to distinguish when the current interval overlaps with
some other intervals that extend past it and the case when there’s a gap between intervals.

def mimimum_cover(intervals):
""" intervals are specified as a tuple (S,F) denoting the starting and finishing point of each interval """
intervals.sort() # sort by starting point

# current selected interval. (assumes that len(intervals) > 0)
cur_start, cur_finish = intervals[0]
# next interval to be selected, which is the interval tha partially overlaps with the current one
# and has the latest finish time
next_finish = None

count = 1 # count the currently selected (first) interval

for start, finish in intervals[1:]:
if start == cur_start: # this interval starts at the same time as the currently selected interval

if finish > cur_finish: # upgrade to this interval if it ends later
cur_finish = finish

elif start < cur_finish: # this interval partially overlaps with the current
if (finish > cur_finish and # this interval is not entirely covered

(next_finish is None or next_finish < finish)):
next_finish = finish # this is the (new) next interval

else: # this interval starts after the current interval
if next_finish is not None: # deal with partial overlap

count += 1 # select the next interval
cur_start = cur_finish
cur_finish = next_finish
next_finish = None
if cur_finish > start: # this interval partially overlaps with the next (new current) interval

if cur_finish < finish: # not entirely covered
next_finish = finish

continue
count += 1 # select this interval
cur_start, cur_finish = start, finish

if next_finish is not None:
count += 1 # count the last partially overlapping interval

return count

Analysis: For n intervals the loop runs n−1 times and it is easy to see that the loop body performs constant
work, so the complexity is dominated by the sort call, which is Θ(n log n).

Proof of optimality: Our implementation is equivalent to following the following process repeatedly:

1. If there are no intervals partially covered by the currently selected intervals, select the uncovered interval
that starts first as the next interval. If there is a tie, select the one that ends latest

2. If the currently selected intervals partially cover some intervals, select the next interval among those,
again choosing the one that ends latest
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We must prove that, for any optimal cover that includes the currently selected intervals, there is an optimal
cover that includes the next one chosen by our algorithm. The optimality of the result will follow by induction.

More formally, suppose that our set of intervals I has an optimal cover O ⊂ I and a subset S ⊂ O. Let U be
the elements of S completely uncovered by S and P be the set of intervals partially covered. Assume further
that all elements in P have their starting point in S (it is easy to see that our algorithm always maintains this
property).

First consider the case that P = ;. Let F be the elements of U that share the earliest starting time. O− S
must include one element in F , call it f . Our algorithm chooses the element in F with the latest ending time, f ′.
Since f ′ starts at the same time as f and lasts at least as long, f ′ covers f , and therefore S+{ f ′}+(O−S−{ f })
is an optimal cover for I . Note also that since f ′ has the earliest start among elements of U , S+ { f ′} maintains
the property that any partially covered elements must have their starting points in S + { f ′}.

Now consider P 6= ;. Then O− S must include some element of P, p.1 Our algorithm chooses the element
p′ with the latest ending time. Then S+{p′} covers S+{p} and therefore S+{p′}+(O−S−{p}) is an optimal
cover for I .

Alternate solution: We can use the same strategy, but adjust the interval set by “removing” any portion of
an interval that is covered by the currently selected cover. This leads to a simpler implementation but Θ(n2)
complexity

1 def min_cover2(intervals):
2 count = 0
3 while len(intervals) > 0:
4 # find best interval to select first
5 best = 0
6 for i in range(1, len(intervals)):
7 if (intervals[i][0] < intervals[best][0] or # starts earlier or
8 # starts at the same time and is longer
9 (intervals[i][0] == intervals[best][0] and intervals[i][1] > intervals[best][1])):

10 best = i
11 # select intervals
12 count += 1
13 cur_start, cur_finish = intervals.pop(best)
14 # select intervals not entirely covered, adjusting the starting time to be >= finish
15 intervals = [(max(cur_finish,start),finish) for start,finish in intervals if finish > cur_finish]
16 return count

Note that we may be able to speed up the finding of the best interval by sorting and/or using a priority
queue, but line 15 is still O(n) resulting in quadratic overall complexity. �

1To be precise, this requires that our definition of “partially covered” include the case where the end of an interval in S is equal to the start
of an interval in P. The algorithm above follows that convention.
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Rubric:

2 pt for identifying a correct greedy strategy
2 pt for proof of optimality

-1 for each minor mistake in strategy or proof, but
-10 if strategy is wrong or proof is wrong or missing

2 pt for correct pseudocode or Python implementation

-0.5 for not handling corner cases
-1 for other mistakes

2 pt for correct algorithm runtime analysis
2 pt for efficiency

-1 for Θ(n2)
-2 for slower polynomial algorithm
-2 if runtime analysis is incorrect
-4 for exponential solution

A correct greedy algorithm without a (mostly) correct optimality proof will receive 0 points.
A correct Θ(n log n) DP algorithm receives 6 points (missing the first two items).
A correct backtracking solution will receive 2 points (2/2 correct implementation, 2/2 correct

analysis, -4/2 for efficiency)
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