
Homework 8

CS/ECE 374 B

Due 8 p.m. Tuesday, November 19

Question 1: ... or die trying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(This question is the same as the textbook question 6(a)(b).)

(a)(5) Describe and analyze a modification of Bellman–Ford that actually returns a negative cycle if any such
cycle is reachable from s, or a shortest-path tree if there is no such cycle. The modified algorithm should
still run in O(V E) time.
Solution:

def BellmanFordTreeOrNegativeCycle(s):
pred(s) = NULL
for all vertices v:

dist(v) = inf
dist(s) = 0
for i = 1 to 2*V:

for all edges u−>v:
if dist(v) > dist(u) + w(u−>v)

dist(v) = dist(u) + w(u−>v)
pred(v) = u

#check for edge we can still relax −−> negative cycle
for all edges u−>v:

if dist(v) > dist(u) + w(u−>v):
#negative cycle
add v, u to set C
while pred(u) is not v:

add pred(u) to C
u = pred(u)

return reverse(C)

#else no negative cycle
#create new graph G’ consisting of vertices from G
for vertex u in G:

if u != s:
add edge pred(u) −> u in G’ with weight w(pred(u)−>u) from G

return G’

This algorithm uses Bellman Ford, (2*|V| loops to ensure predecessor pointers are all set to create
a cycle) which is Θ(V E), then loops over edges which is Θ(E), and possibly then follows predecessor
pointers to compute a path of vertices which is Θ(V ) when we use a dictionary or constant time lookup
(like a set in python) for checking if pred(u) is in L. Thus if there is a negative cycle, the runtime is
still Θ(V E). Otherwise we must create a new graph of vertices, and for each vertex, possibly add an
edge. This costs Θ(V ) to create the graph. Looping over vertices and checking to find edge pred(u)->u
if it exists costs Θ(V E) since we loop over vertices and possibly have to check every edge to find the
pred(u)->u. Overall, the runtime is still Θ(V E) �
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(b)(5) Describe and analyze a modification of Bellman-Ford that computes the correct shortest path distances
from s to every other vertex of the input graph, even if the graph contains negative cycles. Specifically, if
any walk from s to v contains a negative cycle, your algorithm should end with dist(v) =∞; otherwise,
dist(v) should contain the length of the shortest path from s to v. The modified algorithm should still
run in O(V E) time.
Solution:

def ShortestPathsWithNegativeCycles(s):
pred(s) = NULL
for all vertices v:

dist(v) = inf
dist(s) = 0
for i = 1 to V−1:

for all edges u−>v:
if dist(v) > dist(u) + w(u−>v)

dist(v) = dist(u) + w(u−>v)
pred(v) = u

#check for edge we can still relax −−> negative cycle
L = []
for all edges u−>v:

if dist(v) > dist(u) + w(u−>v):
#node is part of negative cycle
add v to list L

#For each node we need to find all nodes it is connected to and set to inf.
for v in L:

run DFS(v) or BFS(v) and mark visited nodes with dist(v) = inf

This algorithm uses Bellman Ford initially, which is Θ(V E). Then we loop over edges and add vertices
to a set L. This costs Θ(E). Then for each vertex marked as part of a negative cycle, we run DFS/BFS on
it to find what it is connected to and mark distance as∞. The worst case would be if we must run a
search from each vertex, but since we mark vertices as visited, the runtime is a linear search, thus still
bounded by Θ(V E). Since Bellman Ford correctly computes the distance for vertices without a negative
cycle on the path, we have set dist() correctly. Thus the overall runtime is still Θ(V E) �
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Question 2: Bus schedules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(This is question 24 in the textbook.)

You are given a directed graph G that represents bus travel in a city. For an edge u→ v, `(u, v) is the amount
of time it takes for the bus to travel from bus stop u to bus stop v. You are also given two numbers for each
stop to determine the schedule: f (u, v) is the first time (in minutes past 12 noon) that the bus leaves from
stop u towards stop v, and ∆(u, v) is the time between such buses. In other words, a bus leaves from stop u to
stop v at f (u, v) + k ·∆(u, v) for k ≥ 0, and arrives at stop v at times f (u, v) + k ·∆(u, v) + `(u, v). Assume
that `(u, v), f (u, v), and ∆(u, v) are all positive numbers.

You are given a graph G and the values `, f , and ∆ for every edge in G. You are also given the starting stop s
and the destination stop t, and the starting time t0. You need to design and analyze an efficient algorithm to
determine the earliest time you can arrive from s to t starting at time t0. Note that you can change buses at a
stop if you arrive at a time that is less than or equal to the departure time of the bus. That is:

f (u, v) + k1 ·∆(u, v) + `(u, v)≤ f (v, w) + k2 ·∆(v, w)

Solution:

from queue import PriorityQueue
from math import ceil

def BusTimes(s,t0):
"""This function should be invoked as BusTimes(s,t0). The time to get to t will then be in dist[t].
For simplicity we assume that vertices in V are numbered and, by extension, that edges in E are
identified as tuples of numbers (u,v). We also assume that there are global lists ’f’, ’delta’, and ’l’
that are indexed by tuples of vertices. All times are assumed to be minutes past 12 noon."""
# set up distances and predecessors
dist = {v: inf for v in V}
pred = {v: None for v in V}
dist[s] = t0
pq = PriorityQueue()
for v in V:

pq.put((v,dist[v]))
while(!pq.empty()):

(u,dist[u]) = pq.get()
for (u,v) in E[u]:

# Solve f[(u,v)]+k*delta[(u,v)]=dist[u] for k, then ceiling that
number_of_elapsed_deltas = (dist[u]−f[(u,v)])/delta[(u,v)]
if(number_of_elapsed_deltas < 0): # the first bus time to v is after our arrival at u

number_of_elapsed_deltas = 0
time_of_next_bus = f[(u,v)]+ceil(number_of_elapsed_deltas)*delta[(u,v)]
if(time_of_next_bus+l[(u,v)] < dist[v]):

dist[v] = time_of_next_bus+l[(u,v)]
pred[v] = u
pq.decreaseKey(v,dist[v])

This algorithm is an adaptation of Dijkstra’s algorithm in the case where it is guaranteed that all edges
are of non-negative length. At each vertex u, for each edge −→uv out of that vertex, we must consider not just
the time taking the bus from u to v, but also the time required to wait for the next bus upon arriving at u.
Because the next bus arrives every ∆(u, v) minutes (after f (u, v), that is), it suffices to calculate the number
of bus departure intervals that have already passed so that we can identify the time of the next bus to depart
from u to v.

These arithmetic operations are run each time for each edge and can be considered essentially constant in
cost, leaving the overall time complexity of this algorithm as that of Dijkstra’s (Θ(E + V log(V ))). �
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Question 3: Internet paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On the Internet, routing paths follow a local preference rule: each Internet service provider (ISP) makes
a local decision between possible routes based on its preferences, usually guided by complex business
decisions. These preferences may depend not just on the previous hop but the entire path to the desti-
nation. For example, in the graph below, there are two paths from s to d. The path that is chosen is
based on d ’s local preference, which can be computed by a function pref(v, p) where v is the identity of
the graph node where the path terminates, p is a path from s to v. The function returns a number such
that pref(v, pa) > pref(v, pb) means that path pa is preferred to path pb. In the graph below, to decide
which path to use from s to d you would need to compare pref(d, (s, a, b, c, d)) and pref(d, (s, a, x , y, d)).

8. S������� P����

in di�erent directions. (At one time, there was a speed trap on I-�� just east of
the Indiana/Ohio border, but only for eastbound tra�c.)

8.� Shortest Path Trees
Almost every algorithm known for computing shortest paths from one vertex
to another actually solves (large portions of) the following more general single
source shortest path or SSSP problem: Find shortest paths from the source
vertex s to every other vertex in the graph. This problem is usually solved by
finding a shortest path tree rooted at s that contains all the desired shortest
paths.

It’s not hard to see that if shortest paths are unique, then they form a tree,
because any subpath of a shortest path is itself a shortest path. If there are
multiple shortest paths to some vertices, we can always choose one shortest
path to each vertex so that the union of the paths is a tree. If there are shortest
paths from s to two vertices u and v that diverge, then meet, then diverge again,
we can modify one of the paths without changing its length, so that the two
paths only diverge once.

s a

b c

x y

d

u

v

Figure 8.�. If s�a�b�c�d�v (solid) and s�a�x�y�d�u (dashed) are shortest paths, then
s�a�b�c�d�u (along the top) is also a shortest path.

Although they are both optimal spanning trees, shortest-path trees and
minimum spanning trees are very di�erent creatures. Shortest-path trees are
rooted and directed; minimum spanning trees are unrooted and undirected.
Shortest-path trees are most naturally defined for directed graphs; minimum
spanning trees are more naturally defined for undirected graphs. If edge weights
are distinct, there is only one minimum spanning tree, but every source vertex
induces a di�erent shortest-path tree; moreover, it is possible for every shortest
path tree to use a di�erent set of edges from the minimum spanning tree.

™8.� Negative Edges
For most shortest-path problems, where the edge weights correspond to distance
or length or time, it is natural to assume that all edge weights are non-negative,
or even positive. However, for many applications of shortest-path algorithms,
it is natural to consider edges with negative weight. For example, the weight

���

Note that each ISP (i.e., nodes in the graph) chooses only which of the incoming edges to use for its path.
Therefore, if d chooses the red path (s, a, x , y, d) then the only path available to u is (s, a, x , y, d, u). In other
words, the only decision to be made in this graph is at d, and therefore the set of paths taken through the
graph can be made into a preferred path tree.

(a)(6) Design and analyze an efficient algorithm for computing the preferred path tree according to a given
pref function. You are given a directed, unweighted graph G = (V, E) as input and a source node s. You
also have access to a local preference function pref. In this part, you should only use the pref function to
decide between paths that are of equal length. You should assume that preftakes time proportional to
the size of its arguments (i.e., O(|p|), the length of the path).
Your result should be a tree T that satisfies the following properties:

• The path from s to v in the preferred path tree T , path(T, s, v), is a shortest path from s to v
• If v→ u is an edge in T and w→ u is another incoming edge to u, then either:

– path(T, s, w) is longer than path(T, s, v), or
– pref(u, path(T, s, u)) is higher than pref(u, path(T, s, w) +w→ u)

Solution: Since the input graph is unweighted, we can use BFS to construct the shortest path tree.
The only difference is that when visiting vertex u, an edge u → v should be relaxed only if either
d(u) + 1< d(v), or d(u) + 1= d(v) and pre f (v, path(T, s, u) + u→ v)> pre f (v, path(T, s, v)).

def q3a(G,s,pref):
""" G is a directed graph, stored as a dictionary from nodes to a list of neighbors
pref is a function that takes a node and a path and returns a number
"""
for all vertices v:

dist(v) = inf
path(v) = []

dist(s) = 0
q = Queue()
q.push(s)
while(!q.empty()):

u = q.dequeue()
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for every edge u −> v:
if d(u) + 1 < d(v):

dist(v) = d(u) + 1
path(v) = path(u) + v
q.enqueue(v)

elif d(u) + 1 == d(v) and pref(v,path(v)) < pref(v,path(u)+v):
path(v) = path(u) + v
q.enqueue(v)

Since each vertex is added to the queue at most the number of times as its in-degree, and each call to
pref(v,p) takes O(V ) time, the total running time of this algorithm is O(V E2).

�

(b)(4) Design an algorithm for computing the preferred path tree where longer paths may be preferred. Again,
you are given a directed, unweighted graph G, a source node s, and access to the pref function. The only
constraint is that you cannot select paths that would result in a loop.) Your algorithm should return
a preferred path tree T with the following property: if v → u is an edge in T and w → u is another
incoming edge to u then either:

• pref(u, path(T, s, u))> pref(u, path(T, s, w) +w→ u), or
• path(T, s, w) traverses u (i.e., adding w→ u to the tree would create a loop)

You do not have to analyze the runtime complexity of this algorithm.

Solution:

def q3b(G, s, pref):
""" G is a directed graph, stored as a dictionary from nodes to a list of neighbors
pref is a function that takes a node and a path and returns a number
"""
paths = {}
changed = True
paths[s] = [s]
while changed:

changed = False
for v, nlist in G.keys():

# iterate over edges v−>u
for u in nlist:

if u == s: # skip source
continue

if u not in paths: # no route to u yet
continue

if (v not in paths or # no route to v yet
(v not in paths[u] and # no loop created
pref(v, paths[u]+[u]) > pref(v, path[v]))): # this path is preferred
paths[v] = paths[u]+[u] # adopt this path
changed = True

�
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Solved Problem

Question 4: 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Although we typically speak of “the” shortest path between two nodes, a single graph could contain several
minimum-length paths with the same endpoints.
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Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source vertex s to a
target vertex t in an arbitrary directed graph G with weighted edges. You may assume that all edge weights
are positive and that all necessary arithmetic operations can be performed in O(1) time.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all edges that cannot be
part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every vertex v, using Dijkstra’s
algorithm. Call an edge u�v tight if dist(u) +w(u�v) = dist(v). Every edge in a shortest path from s to t
must be tight. Conversely, every path from s to t that uses only tight edges has total length dist(t) and is
therefore a shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V + E) time. Because all
edge weights are positive, H is a directed acyclic graph. It remains only to count the number of paths from s
to t in H.

For any vertex v, let PathsToT(v) denote the number of paths in H from v to t; we need to compute
PathsToT (s). This function satisfies the following simple recurrence:

PathsToT (v) =







1 if v = t
∑

v�w

PathsToT (w) otherwise

In particular, if v is a sink but v 6= t (and thus there are no paths from v to t), this recurrence correctly gives
us PathsToT (v) =

∑

∅= 0.

We can memoize this function into the graph itself, storing each value PathsToT (v) at the corresponding
vertex v. Since each subproblem depends only on its successors in H, we can compute PathsToT (v) for all
vertices v by considering the vertices in reverse topological order, or equivalently, by performing a depth-first
search of H starting at s. The resulting algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the preprocessing phase,
which runs in O(E log V) time. �

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for the path-
counting algorithm (standard dynamic programming rubric)
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