1. Prove whether the following languages are regular or not.
 (a) Strings over the alphabet \(\Sigma = \{0, \ldots, 9, \#\} \) that contain a substring \(c\#^c \), where \(c \in \{0, \ldots, 9\} \).
 E.g., 382103###38592, 7892###234 and 00 are in the language.
 (b) Strings over the alphabet \(\Sigma = \{0, \ldots, 9, \#\} \) of the form \(n\#^n \), where \(n \) is a sequence of digits interpreted as a decimal number. E.g., 0, 3###, 11### are in the language.
 (c) Strings over the alphabet \(\Sigma = \{a, b, \ldots, z\} \) that have the same 3 characters repeated in two places. E.g., urbana, trampoline, acclimatization.

2. Let \(f : \Sigma_1 \to \Sigma_2^* \) be a function from symbols in one alphabet to strings in another. We can extend \(f \) to apply to strings in \(\Sigma_1^* \) by the following recursive definition:

 \[
 f(\epsilon) = \epsilon \\
 f(ax) = f(a) \cdot f(x) \quad \text{for} \quad a \in \Sigma_1, x \in \Sigma_1^*
 \]

 Likewise, we can apply \(f \) to languages by defining \(f(L) = \{f(w) | w \in L\} \).

 \(f \) is known as a language homomorphism. For example, we can define \(f \) to map 0 to batman and 1 to robin, then \(f(110) = \text{robinrobinbatman} \). As another example, we can define \(f_{\text{ASCII}} \) that maps each character to its 8-bit ASCII binary representation, in which case \(f_{\text{ASCII}}(374) = 001100110011011100110100 \).

 Given a DFA \(M \) that accepts \(L \), show how to construct an NFA \(N \) that accepts \(f(L) \). Formally prove the correctness of your construction.

 Note that we are looking for an explicit construction of an NFA here, rather than simply a proof that \(f(L) \) is regular, which implies the existence of such an NFA \(N \).

3. Give a context-free grammar for the following languages. You must specify what language is generated by each non-terminal and briefly explain why.
 (a) Binary strings that have remainder of 2 when divided by 5 (e.g., 111, 10, 10001).
 (b) Strings over the alphabet \(\{0, 1\} \) that have two blocks of 0's of equal length. E.g., 0110010011110 or 101100111100010 but not 0 or 0100.
 (c) Arithmetic expressions over decimal numbers using addition (+), multiplication (*), and exponentiation (ˆ) with minimal parentheses. Here are the rules:

 - The usual precedence rules apply, so \(1+2*3^4 \) is equivalent to \(1+(2*(3^4)) \)
 - Any parentheses that could be removed without changing the meaning of the expression are not allowed. E.g., \(1+2*(3^4) \) is an invalid expression, as are \((2*3)+5, 3+(4+8), (4+6), 3^((4+5)) \). \(2*(3+5) \), however, is valid.
 - Since exponentiation is not associative, any double (or more) exponentiation must be parenthesized to remove ambiguity. I.e., \(2^3^4 \) is invalid, instead you have to write \((2^3)^4 \) or \(2^{(3^4)} \). Likewise \((1+2)^{(3+4)}^5 \) is invalid.

 Solved problem

4. Let \(L \) be the set of all strings over \(\{0, 1\}^* \) with exactly twice as many 0s as 1s.
 (a) Describe a CFG for the language \(L \).

 \[\text{[Hint: For any string } u \text{ define } \Delta(u) = \#(0, u) - 2\#(1, u) \text{. Introduce intermediate variables that derive strings with } \Delta(u) = 1 \text{ and } \Delta(u) = -1 \text{ and use them to define a non-terminal that generates } L \]. \]

 \textbf{Solution:} \(S \to \epsilon | SS | 00S1 | 0S10 | 1S00 \)
(b) Prove that your grammar G is correct. As usual, you need to prove both $L \subseteq L(G)$ and $L(G) \subseteq L$.

[Hint: Let $u_{\leq i}$ denote the prefix of u of length i. If $\Delta(u) = 1$, what can you say about the smallest i for which $\Delta(u_{\leq i}) = 1$? How does u split up at that position? If $\Delta(u) = -1$, what can you say about the smallest i such that $\Delta(u_{\leq i}) = -1$?]

Solution: We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:

Claim 1. $L(G) \subseteq L$, that is, every string in $L(G)$ has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0, u) - 2\#(1, u)$. We need to prove that $\Delta(w) = 0$ for every string $w \in L(G)$.

Let w be an arbitrary string in $L(G)$, and consider an arbitrary derivation of w of length k. Assume that $\Delta(x) = 0$ for every string $x \in L(G)$ that can be derived with fewer than k productions.\(^1\) There are five cases to consider, depending on the first production in the derivation of w.

- If $w = e$, then $\#(0, w) = \#(1, w) = 0$ by definition, so $\Delta(w) = 0$.
- Suppose the derivation begins $S \Rightarrow SS \Rightarrow w$. Then $w = xy$ for some strings $x, y \in L(G)$, each of which can be derived with fewer than k productions. The inductive hypothesis implies $\Delta(x) = \Delta(y) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \Rightarrow 00S1 \Rightarrow w$. Then $w = 00x1$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \Rightarrow 1S00 \Rightarrow w$. Then $w = 1x00$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \Rightarrow 0S1S1 \Rightarrow w$. Then $w = 0x1y0$ for some strings $x, y \in L(G)$. The inductive hypothesis implies $\Delta(x) = \Delta(y) = 0$. It immediately follows that $\Delta(w) = 0$.

In all cases, we conclude that $\Delta(w) = 0$, as required. \(\square\)

Claim 2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0, u) - 2\#(1, u)$. For any string u and any integer $0 \leq i \leq |u|$, let u_i denote the ith symbol in u, and let $u_{\leq i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates every binary string x that is shorter than w and has twice as many 0s as 1s. There are two cases to consider:

- If $w = e$, then $e \in L(G)$ because of the production $S \Rightarrow e$.
- Suppose w is non-empty. To simplify notation, let $\Delta_i = \Delta(w_{\leq i})$ for every index i, and observe that $\Delta_0 = \Delta_{|w|} = 0$. There are several subcases to consider:
 - Suppose $\Delta_i = 0$ for some index $0 < i < |w|$. Then we can write $w = xy$, where x and y are non-empty strings with $\Delta(x) = \Delta(y) = 0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \Rightarrow SS$ implies that $w \in L(G)$.
 - Suppose $\Delta_i > 0$ for all $0 < i < |w|$. Then w must begin with 00, since otherwise $\Delta_1 = -2$ or $\Delta_2 = -1$, and the last symbol in w must be 1, since otherwise $\Delta_{|w|-1} = -1$. Thus, we can write $w = 00x1$ for some binary string x. We easily observe that $\Delta(x) = 0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \Rightarrow 00S1$ implies $w \in L(G)$.

\(^1\)Alternatively: Consider the shortest derivation of w, and assume $\Delta(x) = 0$ for every string $x \in L(G)$ such that $|x| < |w|$.

\(^2\)Alternatively: Suppose the shortest derivation of w begins $S \Rightarrow SS \Rightarrow w$. Then $w = xy$ for some strings $x, y \in L(G)$. Neither x nor y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction hypothesis implies. . . . We need some way to deal with the decompositions $w = e \cdot w$ and $w = w \cdot e$, which are both consistent with the production $S \Rightarrow SS$, without falling into an infinite loop.
– Suppose \(\Delta_i < 0 \) for all \(0 < i < |w| \). A symmetric argument to the previous case implies \(w = 1x0\emptyset \) for some binary string \(x \) with \(\Delta(x) = 0 \). The induction hypothesis implies \(x \in L(G) \), and thus the production rule \(S \rightarrow 1S\emptyset \) implies \(w \in L(G) \).

– Finally, suppose none of the previous cases applies: \(\Delta_i < 0 \) and \(\Delta_j > 0 \) for some indices \(i \) and \(j \), but \(\Delta_i \neq 0 \) for all \(0 < i < |w| \).

Let \(i \) be the smallest index such that \(\Delta_i < 0 \). Because \(\Delta_j \) either increases by 1 or decreases by 2 when we increment \(j \), for all indices \(0 < j < |w| \), we must have \(\Delta_j > 0 \) if \(j < i \) and \(\Delta_j < 0 \) if \(j \geq i \).

In other words, there is a unique index \(i \) such that \(\Delta_{i-1} > 0 \) and \(\Delta_i < 0 \). In particular, we have \(\Delta_1 > 0 \) and \(\Delta_{|w|-1} < 0 \). Thus, we can write \(w = \emptyset x1y\emptyset \) for some binary strings \(x \) and \(y \), where \(|x1y| = i \).

We easily observe that \(\Delta(x) = \Delta(y) = 0 \), so the inductive hypothesis implies \(x, y \in L(G) \), and thus the production rule \(S \rightarrow \emptyset 1S \emptyset \) implies \(w \in L(G) \).

In all cases, we conclude that \(G \) generates \(w \). \(\square \)

Together, Claim 1 and Claim 2 imply \(L = L(G) \). \(\blacksquare \)

Rubric: 10 points:
- part (a) = 4 points. As usual, this is not the only correct grammar.
- part (b) = 6 points = 3 points for \(\subseteq \) + 3 points for \(\supseteq \), each using the standard induction template (scaled).