- 1. Prove whether the following languages are regular or not.
 - (a) Strings over the alphabet $\Sigma = \{0, \dots, 9, \#\}$ that contain a substring $c\#^c c$, where $c \in \{0, \dots, 9\}$. E.g., 382103##38592, 7892#234 and 00 are in the language.
 - (b) Strings over the alphabet Σ = {0,...,9,#} of the form ⟨n⟩#ⁿ, where n is a sequence of digits interpreted as a decimal number. E.g., 0, 3###, 11############## are in the language.
 - (c) Strings over the alphabet $\Sigma = \{a, b, ..., z\}$ that have the same 3 characters repeated in two places. E.g., ur**baneban**ana, trampolinejuggling, acclimatization.
- Let f : Σ₁ → Σ₂^{*} be a function from symbols in one alphabet to strings in another. We can extend f to apply to strings in Σ₁^{*} by the following recursive definition:

$$f(\epsilon) = \epsilon$$

$$f(ax) = f(a) \cdot f(x) \qquad \text{for } a \in \Sigma_1, x \in \Sigma_1^*$$

Likewise, we can apply *f* to languages by defining $f(L) = \{f(w) | w \in L\}$.

f is known as a *language homomorphism*. For example, we can define *f* to map 0 to batman and 1 to robin, then f(110) = robinrobinbatman. As another example, we can define f_{ASCII} that maps each character to its 8-bit ASCII binary representation, in which case $f_{\text{ASCII}}(374) = 001100110011011100110100$.

Given a DFA *M* that accepts *L*, show how to construct an NFA *N* that accepts f(L). Formally prove the correctness of your construction.

Note that we are looking for an explicit construction of an NFA here, rather than simply a proof that f(L) is regular, which implies the existence of such an NFA N.

- 3. Give a context-free grammar for the following languages. You must specify what language is generated by each non-terminal and briefly explain why.
 - (a) Binary strings that have remainder of 2 when divided by 5 (e.g., 111, 10, 10001).
 - (b) Strings over the alphabet {0, 1} that have two blocks of o's of equal length. E.g., 001100010001110
 or 10110011100010 but not 0 or 0100.
 - (c) Arithmetic expressions over decimal numbers using addition (+), multiplication (*), and exponentiation (^) with minimal parentheses. Here are the rules:
 - The usual precedence rules apply, so $1+2\times3^{4}$ is equivalent to $1+(2\times(3^{4}))$
 - Any parentheses that could be removed without changing the meaning of the expression are not allowed. E.g., 1+(2*(3⁴)) is an invalid expression, as are (2*3)+5, 3+(4+8), (4+6), 3⁽⁽⁴⁺⁵⁾⁾. 2*(3+5), however, is valid.
 - Since exponentiation is not associative, any double (or more) exponentiation must be parenthesized to remove ambiguity. I.e., 2³⁴ is invalid, instead you have to write (2³)⁴ or 2^(3⁴). Likewise (1+2)^{(3*4)⁵} is invalid.

Solved problem

- 4. Let *L* be the set of all strings over $\{0, 1\}^*$ with exactly twice as many 0s as 1s.
 - (a) Describe a CFG for the language *L*.

[Hint: For any string u define $\Delta(u) = \#(0, u) - 2\#(1, u)$. Introduce intermediate variables that derive strings with $\Delta(u) = 1$ and $\Delta(u) = -1$ and use them to define a non-terminal that generates *L*.]

Solution: $S \rightarrow \varepsilon \mid SS \mid 00S1 \mid 0S1S0 \mid 1S00$

(b) Prove that your grammar *G* is correct. As usual, you need to prove both *L* ⊆ *L*(*G*) and *L*(*G*) ⊆ *L*. [*Hint:* Let u_{≤i} denote the prefix of *u* of length *i*. If Δ(*u*) = 1, what can you say about the smallest *i* for which Δ(u_{≤i}) = 1? How does *u* split up at that position? If Δ(*u*) = −1, what can you say about the smallest *i* such that Δ(u_{≤i}) = −1?]

Solution: We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:

Claim 1. $L(G) \subseteq L$, that is, every string in L(G) has exactly twice as many 0 s as 1 s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0, u) - 2\#(1, u)$. We need to prove that $\Delta(w) = 0$ for every string $w \in L(G)$.

Let *w* be an arbitrary string in L(G), and consider an arbitrary derivation of *w* of length *k*. Assume that $\Delta(x) = 0$ for every string $x \in L(G)$ that can be derived with fewer than *k* productions.¹ There are five cases to consider, depending on the first production in the derivation of *w*.

- If $w = \varepsilon$, then #(0, w) = #(1, w) = 0 by definition, so $\Delta(w) = 0$.
- Suppose the derivation begins S → SS →* w. Then w = xy for some strings x, y ∈ L(G), each of which can be derived with fewer than k productions. The inductive hypothesis implies Δ(x) = Δ(y) = 0. It immediately follows that Δ(w) = 0.²
- Suppose the derivation begins $S \rightsquigarrow 00S1 \rightsquigarrow^* w$. Then w = 00x1 for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins S → 1S00 →* w. Then w = 1x00 for some string x ∈ L(G). The inductive hypothesis implies Δ(x) = 0. It immediately follows that Δ(w) = 0.
- Suppose the derivation begins S → 0S1S1 →* w. Then w = 0x1y0 for some strings x, y ∈ L(G). The inductive hypothesis implies Δ(x) = Δ(y) = 0. It immediately follows that Δ(w) = 0.

In all cases, we conclude that $\Delta(w) = 0$, as required.

Claim 2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0, u) - 2\#(1, u)$. For any string u and any integer $0 \le i \le |u|$, let u_i denote the *i*th symbol in u, and let $u_{\le i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates every binary string x that is shorter than w and has twice as many 0s as 1s. There are two cases to consider:

- If $w = \varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \to \varepsilon$.
- Suppose *w* is non-empty. To simplify notation, let Δ_i = Δ(w_{≤i}) for every index *i*, and observe that Δ₀ = Δ_{lwl} = 0. There are several subcases to consider:
 - Suppose $\Delta_i = 0$ for some index 0 < i < |w|. Then we can write w = xy, where x and y are non-empty strings with $\Delta(x) = \Delta(y) = 0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \to SS$ implies that $w \in L(G)$.
 - Suppose $\Delta_i > 0$ for all 0 < i < |w|. Then *w* must begin with 00, since otherwise $\Delta_1 = -2$ or $\Delta_2 = -1$, and the last symbol in *w* must be 1, since otherwise $\Delta_{|w|-1} = -1$. Thus, we can write w = 00x1 for some binary string *x*. We easily observe that $\Delta(x) = 0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 00S1$ implies $w \in L(G)$.

¹Alternatively: Consider the *shortest* derivation of *w*, and assume $\Delta(x) = 0$ for every string $x \in L(G)$ such that |x| < |w|.

²Alternatively: Suppose the *shortest* derivation of *w* begins $S \to SS \to^* w$. Then w = xy for some strings $x, y \in L(G)$. Neither *x* or *y* can be empty, because otherwise we could shorten the derivation of *w*. Thus, *x* and *y* are both shorter than *w*, so the induction hypothesis implies.... We need some way to deal with the decompositions $w = \varepsilon \cdot w$ and $w = w \cdot \varepsilon$, which are both consistent with the production $S \to SS$, without falling into an infinite loop.

- Suppose $\Delta_i < 0$ for all 0 < i < |w|. A symmetric argument to the previous case implies $w = \mathbf{1}x00$ for some binary string x with $\Delta(x) = 0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \to \mathbf{1}S00$ implies $w \in L(G)$.
- Finally, suppose none of the previous cases applies: Δ_i < 0 and Δ_j > 0 for some indices *i* and *j*, but Δ_i ≠ 0 for all 0 < *i* < |*w*|.

Let *i* be the smallest index such that $\Delta_i < 0$. Because Δ_j either increases by 1 or decreases by 2 when we increment *j*, for all indices 0 < j < |w|, we must have $\Delta_j > 0$ if j < i and $\Delta_j < 0$ if $j \ge i$.

In other words, there is a *unique* index *i* such that $\Delta_{i-1} > 0$ and $\Delta_i < 0$. In particular, we have $\Delta_1 > 0$ and $\Delta_{|w|-1} < 0$. Thus, we can write $w = 0x \mathbf{1}y \mathbf{0}$ for some binary strings *x* and *y*, where $|0x\mathbf{1}| = i$.

We easily observe that $\Delta(x) = \Delta(y) = 0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \to 0S1S0$ implies $w \in L(G)$.

In all cases, we conclude that *G* generates *w*. Together, Claim 1 and Claim 2 imply L = L(G). Rubric: 10 points:

- part (a) = 4 points. As usual, this is not the only correct grammar.
- part (b) = 6 points = 3 points for ⊆ + 3 points for ⊇, each using the standard induction template (scaled).