1. Prove whether the following languages are regular or not.
(a) Strings over the alphabet $\Sigma=\{0, \ldots, 9, \#\}$ that contain a substring $c \#^{c} c$, where $c \in\{0, \ldots, 9\}$. E.g., 382103\#\#\#38592, 7892\#\#234 and 00 are in the language.
(b) Strings over the alphabet $\Sigma=\{0, \ldots, 9, \#\}$ of the form $\langle n\rangle \#^{n}$, where n is a sequence of digits interpreted as a decimal number. E.g., 0, 3\#\#\#, 11\#\#\#\#\#\#\#\#\#\#\# are in the language.
(c) Strings over the alphabet $\Sigma=\{a, b, \ldots, z\}$ that have the same 3 characters repeated in two places. E.g., urbanebanana, trampolinejuggling, acclimatization.
2. Let $f: \Sigma_{1} \rightarrow \Sigma_{2}^{*}$ be a function from symbols in one alphabet to strings in another. We can extend f to apply to strings in Σ_{1}^{*} by the following recursive definition:

$$
\begin{array}{rlrl}
f(\epsilon) & =\epsilon & \\
f(a x) & =f(a) \cdot f(x) \quad \text { for } a \in \Sigma_{1}, x \in \Sigma_{1}^{*}
\end{array}
$$

Likewise, we can apply f to languages by defining $f(L)=\{f(w) \mid w \in L\}$.
f is known as a language homomorphism. For example, we can define f to map 0 to batman and 1 to robin, then $f(110)=$ robinrobinbatman. As another example, we can define $f_{\text {ASCII }}$ that maps each character to its 8 -bit ASCII binary representation, in which case $f_{\text {ASCII }}(374)=$ 001100110011011100110100.

Given a DFA M that accepts L, show how to construct an NFA N that accepts $f(L)$. Formally prove the correctness of your construction.

Note that we are looking for an explicit construction of an NFA here, rather than simply a proof that $f(L)$ is regular, which implies the existence of such an NFA N.
3. Give a context-free grammar for the following languages. You must specify what language is generated by each non-terminal and briefly explain why.
(a) Binary strings that have remainder of 2 when divided by 5 (e.g., 111, 10, 10001).
(b) Strings over the alphabet $\{0,1\}$ that have two blocks of o's of equal length. E.g., 001100010001110 or $1 \underline{0} 110011100010$ but not 0 or 0100 .
(c) Arithmetic expressions over decimal numbers using addition (+), multiplication (*), and exponentiation (${ }^{\wedge}$) with minimal parentheses. Here are the rules:

- The usual precedence rules apply, so $1+2 \star 3^{\wedge} 4$ is equivalent to $1+\left(2 \star\left(3^{\wedge} 4\right)\right)$
- Any parentheses that could be removed without changing the meaning of the expression are not allowed. E.g., $1+\left(2 *\left(3^{\wedge} 4\right)\right)$ is an invalid expression, as are $(2 * 3)+5,3+(4+8)$, $(4+6), 3^{\wedge}((4+5)) .2 *(3+5)$, however, is valid.
- Since exponentiation is not associative, any double (or more) exponentiation must be parenthesized to remove ambiguity. I.e., $2^{\wedge} 3^{\wedge} 4$ is invalid, instead you have to write $\left(2^{\wedge} 3\right)^{\wedge} 4$ or $2^{\wedge}\left(3^{\wedge} 4\right)$. Likewise $(1+2)^{\wedge}(3 \star 4)^{\wedge} 5$ is invalid.

Solved problem

4. Let L be the set of all strings over $\{0,1\}^{*}$ with exactly twice as many 0 s as 1 s .
(a) Describe a CFG for the language L.
[Hint: For any string u define $\Delta(u)=\#(0, u)-2 \#(1, u)$. Introduce intermediate variables that derive strings with $\Delta(u)=1$ and $\Delta(u)=-1$ and use them to define a non-terminal that generates L.]

Solution: $S \rightarrow \varepsilon|S S| 00 S 1|0 S 1 S 0| 1 S 00$
(b) Prove that your grammar G is correct. As usual, you need to prove both $L \subseteq L(G)$ and $L(G) \subseteq L$. [Hint: Let $u_{\leq i}$ denote the prefix of u of length i. If $\Delta(u)=1$, what can you say about the smallest i for which $\Delta\left(u_{\leq i}\right)=1$? How does u split up at that position? If $\Delta(u)=-1$, what can you say about the smallest i such that $\Delta\left(u_{\leq i}\right)=-1$?]

Solution: We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:
Claim 1. $L(G) \subseteq L$, that is, every string in $L(G)$ has exactly twice as many $0 s$ as $1 s$.
Proof: As suggested by the hint, for any string u, let $\Delta(u)=\#(0, u)-2 \#(1, u)$. We need to prove that $\Delta(w)=0$ for every string $w \in L(G)$.

Let w be an arbitrary string in $L(G)$, and consider an arbitrary derivation of w of length k. Assume that $\Delta(x)=0$ for every string $x \in L(G)$ that can be derived with fewer than k productions. ${ }^{1}$ There are five cases to consider, depending on the first production in the derivation of w.

- If $w=\varepsilon$, then $\#(0, w)=\#(1, w)=0$ by definition, so $\Delta(w)=0$.
- Suppose the derivation begins $S \rightsquigarrow S S m^{*} w$. Then $w=x y$ for some strings $x, y \in L(G)$, each of which can be derived with fewer than k productions. The inductive hypothesis implies $\Delta(x)=\Delta(y)=0$. It immediately follows that $\Delta(w)=0 .{ }^{2}$
- Suppose the derivation begins $S \leadsto 00 S 1$ w* w. Then $w=00 x 1$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x)=0$. It immediately follows that $\Delta(w)=0$.
- Suppose the derivation begins $S \leadsto 1 S 00 m * w$. Then $w=1 x 00$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x)=0$. It immediately follows that $\Delta(w)=0$.
- Suppose the derivation begins $S \leadsto 0 S 1 S 1 w^{*} w$. Then $w=0 x 1 y 0$ for some strings $x, y \in L(G)$. The inductive hypothesis implies $\Delta(x)=\Delta(y)=0$. It immediately follows that $\Delta(w)=0$.

In all cases, we conclude that $\Delta(w)=0$, as required.
Claim 2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many $0 s$ as 1 s .

Proof: As suggested by the hint, for any string u, let $\Delta(u)=\#(0, u)-2 \#(1, u)$. For any string u and any integer $0 \leq i \leq|u|$, let $\boldsymbol{u}_{\boldsymbol{i}}$ denote the i th symbol in u, and let $\boldsymbol{u}_{\leq i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0 s as 1 s . Assume that G generates every binary string x that is shorter than w and has twice as many 0 s as 1 s . There are two cases to consider:

- If $w=\varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \rightarrow \varepsilon$.
- Suppose w is non-empty. To simplify notation, let $\Delta_{i}=\Delta\left(w_{\leq i}\right)$ for every index i, and observe that $\Delta_{0}=\Delta_{|w|}=0$. There are several subcases to consider:
- Suppose $\Delta_{i}=0$ for some index $0<i<|w|$. Then we can write $w=x y$, where x and y are non-empty strings with $\Delta(x)=\Delta(y)=0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \rightarrow S S$ implies that $w \in L(G)$.
- Suppose $\Delta_{i}>0$ for all $0<i<|w|$. Then w must begin with 00 , since otherwise $\Delta_{1}=-2$ or $\Delta_{2}=-1$, and the last symbol in w must be 1 , since otherwise $\Delta_{|w|-1}=-1$. Thus, we can write $w=00 x 1$ for some binary string x. We easily observe that $\Delta(x)=0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 00 S 1$ implies $w \in L(G)$.

[^0]- Suppose $\Delta_{i}<0$ for all $0<i<|w|$. A symmetric argument to the previous case implies $w=1 x 00$ for some binary string x with $\Delta(x)=0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 1 S 00$ implies $w \in L(G)$.
- Finally, suppose none of the previous cases applies: $\Delta_{i}<0$ and $\Delta_{j}>0$ for some indices i and j, but $\Delta_{i} \neq 0$ for all $0<i<|w|$.

Let i be the smallest index such that $\Delta_{i}<0$. Because Δ_{j} either increases by 1 or decreases by 2 when we increment j, for all indices $0<j<|w|$, we must have $\Delta_{j}>0$ if $j<i$ and $\Delta_{j}<0$ if $j \geq i$.

In other words, there is a unique index i such that $\Delta_{i-1}>0$ and $\Delta_{i}<0$. In particular, we have $\Delta_{1}>0$ and $\Delta_{|w|-1}<0$. Thus, we can write $w=0 x 1 y 0$ for some binary strings x and y, where $|0 \times 1|=i$.

We easily observe that $\Delta(x)=\Delta(y)=0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \rightarrow 0 S 1 S 0$ implies $w \in L(G)$.

In all cases, we conclude that G generates w.
Together, Claim 1 and Claim 2 imply $L=L(G)$.

Rubric: 10 points:

- part $(\mathrm{a})=4$ points. As usual, this is not the only correct grammar.
- part (b) $=6$ points $=3$ points for $\subseteq+3$ points for \supseteq, each using the standard induction template (scaled).

[^0]: ${ }^{1}$ Alternatively: Consider the shortest derivation of w, and assume $\Delta(x)=0$ for every string $x \in L(G)$ such that $|x|<|w|$.
 ${ }^{2}$ Alternatively: Suppose the shortest derivation of w begins $S \leadsto S S m * w$. Then $w=x y$ for some strings $x, y \in L(G)$. Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction hypothesis implies.... We need some way to deal with the decompositions $w=\varepsilon \bullet w$ and $w=w \bullet \varepsilon$, which are both consistent with the production $S \rightarrow S S$, without falling into an infinite loop.

