
CS/ECE 374 B Homework 3 (due September 24) Fall 2019

1. Prove whether the following languages are regular or not.

(a) Strings over the alphabet Σ= {0, . . . , 9,#} that contain a substring c#cc, where c ∈ {0, . . . , 9}.
E.g., 382103###38592, 7892##234 and 00 are in the language.

(b) Strings over the alphabet Σ= {0, . . . , 9,#} of the form 〈n〉#n, where n is a sequence of digits
interpreted as a decimal number. E.g., 0, 3###, 11########### are in the language.

(c) Strings over the alphabet Σ = {a, b, . . . , z} that have the same 3 characters repeated in two
places. E.g., urbanebanana, trampolinejuggling, acclimatization.

2. Let f : Σ1→ Σ∗2 be a function from symbols in one alphabet to strings in another. We can extend f
to apply to strings in Σ∗1 by the following recursive definition:

f (ε) = ε
f (ax) = f (a) · f (x) for a ∈ Σ1, x ∈ Σ∗1

Likewise, we can apply f to languages by defining f (L) = { f (w)|w ∈ L}.
f is known as a language homomorphism. For example, we can define f to map 0 to batman
and 1 to robin, then f (110) = robinrobinbatman. As another example, we can define fASCII
that maps each character to its 8-bit ASCII binary representation, in which case fASCII(374) =
001100110011011100110100.
Given a DFA M that accepts L, show how to construct an NFA N that accepts f (L). Formally prove
the correctness of your construction.

Note that we are looking for an explicit construction of an NFA here, rather than simply a proof that
f (L) is regular, which implies the existence of such an NFA N .

3. Give a context-free grammar for the following languages. You must specify what language is
generated by each non-terminal and briefly explain why.

(a) Binary strings that have remainder of 2 when divided by 5 (e.g., 111, 10, 10001).
(b) Strings over the alphabet {0,1} that have two blocks of 0’s of equal length. E.g., 001100010001110

or 10110011100010 but not 0 or 0100.
(c) Arithmetic expressions over decimal numbers using addition (+), multiplication (*), and

exponentiation (ˆ) with minimal parentheses. Here are the rules:

• The usual precedence rules apply, so 1+2*3ˆ4 is equivalent to 1+(2*(3ˆ4))
• Any parentheses that could be removed without changing the meaning of the expression are

not allowed. E.g., 1+(2*(3ˆ4)) is an invalid expression, as are (2*3)+5, 3+(4+8),
(4+6), 3ˆ((4+5)). 2*(3+5), however, is valid.

• Since exponentiation is not associative, any double (or more) exponentiation must be
parenthesized to remove ambiguity. I.e., 2ˆ3ˆ4 is invalid, instead you have to write
(2ˆ3)ˆ4 or 2ˆ(3ˆ4). Likewise (1+2)ˆ(3*4)ˆ5 is invalid.

Solved problem

4. Let L be the set of all strings over {0,1}∗ with exactly twice as many 0s as 1s.

(a) Describe a CFG for the language L.
[Hint: For any string u define ∆(u) = #(0, u)− 2#(1, u). Introduce intermediate variables
that derive strings with ∆(u) = 1 and ∆(u) = −1 and use them to define a non-terminal that
generates L.]

Solution: S→ ε | SS | 00S1 | 0S1S0 | 1S00 �

1

CS/ECE 374 B Homework 3 (due September 24) Fall 2019

(b) Prove that your grammar G is correct. As usual, you need to prove both L ⊆ L(G) and L(G) ⊆ L.
[Hint: Let u≤i denote the prefix of u of length i. If ∆(u) = 1, what can you say about the
smallest i for which ∆(u≤i) = 1? How does u split up at that position? If ∆(u) = −1, what
can you say about the smallest i such that ∆(u≤i) = −1?]

Solution: We separately prove L ⊆ L(G) and L(G) ⊆ L as follows:

Claim 1. L(G) ⊆ L, that is, every string in L(G) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u)− 2#(1, u). We need to
prove that ∆(w) = 0 for every string w ∈ L(G).

Let w be an arbitrary string in L(G), and consider an arbitrary derivation of w of length
k. Assume that ∆(x) = 0 for every string x ∈ L(G) that can be derived with fewer than
k productions.1 There are five cases to consider, depending on the first production in the
derivation of w.

• If w= ε, then #(0, w) = #(1, w) = 0 by definition, so ∆(w) = 0.
• Suppose the derivation begins S SS ∗ w. Then w= x y for some strings x , y ∈ L(G),

each of which can be derived with fewer than k productions. The inductive hypothesis
implies ∆(x) =∆(y) = 0. It immediately follows that ∆(w) = 0.2

• Suppose the derivation begins S 00S1 ∗ w. Then w= 00x1 for some string x ∈ L(G).
The inductive hypothesis implies ∆(x) = 0. It immediately follows that ∆(w) = 0.

• Suppose the derivation begins S 1S00 ∗ w. Then w= 1x00 for some string x ∈ L(G).
The inductive hypothesis implies ∆(x) = 0. It immediately follows that ∆(w) = 0.

• Suppose the derivation begins S 0S1S1 ∗ w. Then w = 0x1y0 for some strings
x , y ∈ L(G). The inductive hypothesis implies ∆(x) =∆(y) = 0. It immediately follows
that ∆(w) = 0.

In all cases, we conclude that ∆(w) = 0, as required. �

Claim 2. L ⊆ L(G); that is, G generates every binary string with exactly twice as many 0s
as 1s.

Proof: As suggested by the hint, for any string u, let∆(u) = #(0, u)−2#(1, u). For any string
u and any integer 0≤ i ≤ |u|, let ui denote the ith symbol in u, and let u≤i denote the prefix
of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates
every binary string x that is shorter than w and has twice as many 0s as 1s. There are two
cases to consider:

• If w= ε, then ε ∈ L(G) because of the production S→ ε.
• Suppose w is non-empty. To simplify notation, let ∆i = ∆(w≤i) for every index i, and

observe that ∆0 =∆|w| = 0. There are several subcases to consider:
– Suppose ∆i = 0 for some index 0< i < |w|. Then we can write w= x y , where x and

y are non-empty strings with ∆(x) = ∆(y) = 0. The induction hypothesis implies
that x , y ∈ L(G), and thus the production rule S→ SS implies that w ∈ L(G).

– Suppose ∆i > 0 for all 0 < i < |w|. Then w must begin with 00, since otherwise
∆1 = −2 or∆2 = −1, and the last symbol in w must be 1, since otherwise∆|w|−1 = −1.
Thus, we can write w = 00x1 for some binary string x . We easily observe that
∆(x) = 0, so the induction hypothesis implies x ∈ L(G), and thus the production rule
S→ 00S1 implies w ∈ L(G).

1Alternatively: Consider the shortest derivation of w, and assume ∆(x) = 0 for every string x ∈ L(G) such that |x |< |w|.
2Alternatively: Suppose the shortest derivation of w begins S SS ∗ w. Then w= x y for some strings x , y ∈ L(G). Neither x

or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction
hypothesis implies. . . . We need some way to deal with the decompositions w= ε • w and w= w • ε, which are both consistent with
the production S→ SS, without falling into an infinite loop.

2

CS/ECE 374 B Homework 3 (due September 24) Fall 2019

– Suppose∆i < 0 for all 0< i < |w|. A symmetric argument to the previous case implies
w= 1x00 for some binary string x with ∆(x) = 0. The induction hypothesis implies
x ∈ L(G), and thus the production rule S→ 1S00 implies w ∈ L(G).

– Finally, suppose none of the previous cases applies: ∆i < 0 and ∆ j > 0 for some
indices i and j, but ∆i 6= 0 for all 0< i < |w|.

Let i be the smallest index such that ∆i < 0. Because ∆ j either increases by 1 or
decreases by 2 when we increment j, for all indices 0< j < |w|, we must have ∆ j > 0
if j < i and ∆ j < 0 if j ≥ i.

In other words, there is a unique index i such that ∆i−1 > 0 and ∆i < 0. In
particular, we have ∆1 > 0 and ∆|w|−1 < 0. Thus, we can write w= 0x1y0 for some
binary strings x and y , where |0x1|= i.

We easily observe that ∆(x) = ∆(y) = 0, so the inductive hypothesis implies
x , y ∈ L(G), and thus the production rule S→ 0S1S0 implies w ∈ L(G).

In all cases, we conclude that G generates w. �

Together, Claim 1 and Claim 2 imply L = L(G). �

Rubric: 10 points:
• part (a) = 4 points. As usual, this is not the only correct grammar.
• part (b) = 6 points = 3 points for ⊆ + 3 points for ⊇, each using the standard induction

template (scaled).

3

