1. **Building NFAs.** For each of the languages below, construct an NFA that accepts the language. You may either draw the NFA or write out a formal transition function. In either case, you need to label/explain your states and briefly argue why the NFA accepts the correct language.

 (a) All strings over $\Sigma = \{0, 1\}$ that have two of the same characters at a distance 3 from each other. E.g., 101101, 10100.

 (b) All strings over $\Sigma = \{0, 1, \ldots, 9\}$ that contain both 374 and 473 as substrings.

2. **NFAs to DFAs.** For the following regular expressions, do the following steps:

 - Construct an NFA corresponding to the regular expression using Thompson’s algorithm
 - Use the incremental subset construction to convert the NFA to a DFA
 - Create another DFA with fewer states to recognize the language

 (a) $(\epsilon + 0)(1 + 10)^*$

 (b) $0^*(10^*10^*)^*$

3. **Palindromes.** In both subproblems below, you need to formally specify the NFA N and formally prove that it accepts the language required by the problem.

 (a) Given a DFA M, define an NFA N such that $L(N) = \{x \in L(M) | x = x^R\}$, i.e., N accepts the strings in $L(M)$ that are palindromes

 (b) Given a DFA M, define an NFA N such that $L(N) = \{x \in \Sigma^* | xx^R \in L(M)\}$

4. **Not to submit:** Recall that for any language L, $\overline{L} = \Sigma^* - L$ is the complement of L. In particular, for any NFA N, $\overline{L(N)}$ is the complement of $L(N)$.

 Let $N = (Q, \Sigma, \delta, s, A)$ be an NFA, and define the NFA $N_{\text{comp}} = (Q, \Sigma, \delta, s, Q \setminus A)$. In other words we simply complemented the accepting states of N to obtain N_{comp}. Note that if M is DFA then M_{comp} accepts $\Sigma^* - L(M)$. However things are trickier with NFAs.

 (a) Describe a concrete example of a machine N to show that $L(N_{\text{comp}}) \neq \overline{L(N)}$. You need to explain for your machine N what $\overline{L(N)}$ and $L(N_{\text{comp}})$ are.

 (b) Define an NFA that accepts $\overline{L(N)} - L(N_{\text{comp}})$, and explain how it works.

 (c) Define an NFA that accepts $L(N_{\text{comp}}) - L(N)$, and explain how it works.

 Hint: For all three parts it is useful to classify strings in Σ^* based on whether N takes them to accepting and non-accepting states from s.

CS/ECE 374 ♦ Fall 2019
Homework 2 ♦
Due Tuesday, September 17, 2019 at 8 p.m.
Solved problem

4. Let L be an arbitrary regular language. Prove that the language $\text{half}(L) := \{w \mid ww \in L\}$ is also regular.

Solution: Let $M = (\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts L. We define a new NFA $M' = (\Sigma, Q', s', A', \delta')$ with ϵ-transitions that accepts $\text{half}(L)$, as follows:

$$Q' = (Q \times Q \times Q) \cup \{s'\}$$

s' is an explicit state in Q'

$$A' = \{(h, h, q) \mid h \in Q \text{ and } q \in A\}$$

$$\delta'(s', \epsilon) = \{(s, h, h) \mid h \in Q\}$$

$$\delta'((p, h, q), a) = \{\delta(p, a), h, \delta(q, a)\}$$

M' reads its input string w and simulates M reading the input string ww. Specifically, M' simultaneously simulates two copies of M, one reading the left half of ww starting at the usual start state s, and the other reading the right half of ww starting at some intermediate state h.

- The new start state s' non-deterministically guesses the “halfway” state $h = \delta^*(s, w)$ without reading any input; this is the only non-determinism in M'.

- State (p, h, q) means the following:
 - The left copy of M (which started at state s) is now in state p.
 - The initial guess for the halfway state is h.
 - The right copy of M (which started at state h) is now in state q.

- M' accepts if and only if the left copy of M ends at state h (so the initial non-deterministic guess $h = \delta^*(s, w)$ was correct) and the right copy of M ends in an accepting state.

\[\square\]

Rubric: 5 points =
+ 1 for a formal, complete, and unambiguous description of a DFA or NFA
 - No points for the rest of the problem if this is missing.
+ 3 for a correct NFA
 - -1 for a single mistake in the description (for example a typo)
+ 1 for a brief English justification. We explicitly do not want a formal proof of correctness, but we do want one or two sentences explaining how the NFA works.