CS/ECE 374 \& Fall 2019 ค Homework 2 ~

Solutions

1. Building NFAs. For each of the languages below, construct an NFA that accepts the language. You may either draw the NFA or write out a formal transition function. In either case, you need to label/explain your states and briefly argue why the NFA accepts the correct language.
(a) All strings over $\Sigma=\{0,1\}$ that have two of the same characters at a distance 3 from each other. E.g., 1011011, 10100.

Solution:

q0: Start state; we have not read the first matching character
$q 1$: We read first matching character and it's a 1
$q 2$: We read any symbol so we have $1 x$.
$q 3$: We read any symbol so we have $1 x x$.
q4: We read first matching character and it's a o
$q 5$: We read any symbol so we have $0 x$.
q6: We read any symbol so we have $0 x x$.
t : We have found the matching characters at distance 3 , any remaining suffix is ok
(b) All strings over $\Sigma=\{0,1, \ldots, 9\}$ that contain both 374 and 473 as substrings.

Solution:

q0: Start state.
q1: We read first 3 in 374 first.
$q 2$: We read 7 for substring 37 .
q3: We read 4 in a string that has non overlapping 374-473.
q4: We read a 4, starting the substring 473 after reading 374 (possibly overlap).
$q 5$: We read a 7 in the 473 substring after 374.
q6: We read first 4 in 473 first.
q7: We read 7 for substring 47.
q8: We read a 3 in a string that has non overlapping 473-374.
q9: We read a 3, starting the substring 374 after reading 473 (possibly overlap).
$q 10$: We read a 7 in the 374 substring after 473.
t : We read a string that has both substrings 374 and 473.
2. NFAs to DFAs. For the following regular expressions, do the following steps:

- Construct an NFA corresponding to the regular expression using Thompson's algorithm
- Use the incremental subset construction to convert the NFA to a DFA
- Create another DFA with fewer states to recognize the language
(a) $(\epsilon+0)(1+10)^{*}$
i. NFA:

ii. DFA from imcremental subset construction:

q^{\prime}	$\epsilon-\operatorname{reach}\left(q^{\prime}\right)$	$q^{\prime} \in A$?	$\delta^{\prime}\left(q^{\prime}, 0\right)$	$\delta^{\prime}\left(q^{\prime}, 1\right)$
a	abcdfghikp	\checkmark	e	$j l$
e	ef ghikp	\checkmark	\emptyset	$j l$
$j l$	hjlmop	\checkmark	n	$j l$
n	hiknop	\checkmark	\emptyset	$j l$

Note: the above table was not required but helps understand the solution iii. DFA:

This language basically means there cannot be two consecutive 0s.

a: No 00 seen and last char was a 1
b: No 00 seen and last char a 0
c: 00 has been seen in the input
(b) $0^{*}\left(10^{*} 10^{*}\right)^{*}$
i. NFA:

ii. DFA from imcremental subset construction:

q^{\prime}	$\epsilon-\operatorname{reach}\left(q^{\prime}\right)$	$q^{\prime} \in A ?$	$\delta^{\prime}\left(q^{\prime}, 0\right)$	$\delta^{\prime}\left(q^{\prime}, 1\right)$
a	abdefr	\checkmark	c	g
c	$a b c d e f r$	\checkmark	c	g
g	ghikl		j	m
j	hijkl		j	m
m	efnoqr	\checkmark	p	g
p	efnopqr	\checkmark	p	g

iii. DFA:

The strings in the language should have even number of 1 s .

a: Even number of 1's seen
b : Odd number of 1's seen
3. Palindromes. In both subproblems below, you need to formally specify the NFA N and formally prove that it accepts the language required by the problem.
(a) Given a DFA M, define an NFA N such that $L(N)=\left\{x \in L(M) \mid x=x^{R}\right\}$, i.e., N^{\prime} accepts the strings in $L(M)$ that are palindromes

Solution: This is impossible; e.g., if $L(M)=\Sigma^{*}$, then $L(N)$ is the language of all palindromes, which is not regular and therefore cannot be matched by an NFA.
(b) Given a DFA M, define an NFA N such that $L(N)=\left\{x \in \Sigma^{*} \mid x x^{R} \in L(M)\right\}$

Solution: Let $M=(\Sigma, Q, \delta, s, A)$ be the given DFA. We construct the NFA $N=$ ($\Sigma, Q^{\prime}, \delta^{\prime}, s^{\prime}, A^{\prime}$) from M as follows.

$$
\begin{aligned}
& Q^{\prime}=(Q \times Q) \cup\left\{s^{\prime}\right\} \\
& s^{\prime} \text { is an explicit state in } Q^{\prime} \\
& A^{\prime}=\{(h, h) \mid h \in Q\} \\
& \delta^{\prime}\left(s^{\prime}, \varepsilon\right)=\{(s, a) \mid a \in A\} \\
& \delta^{\prime}((p, q), a)=\left\{\left(\delta(p, a), q^{\prime}\right) \mid \delta\left(q^{\prime}, a\right)=q\right\} \quad \text { for } p, q \in Q, a \in \Sigma
\end{aligned}
$$

N simultaneously simulates two copies of M on the input string: one that runs normally and one that runs in reverse. To run the normal copy of M on some input symbol, N simply chooses the next state as defined by M 's transition function. To run the reverse copy of M on some input symbol, N non-deterministically guesses the previous state from which taking the input symbol transition leads to the current state in the reverse copy.

- The new start state s^{\prime} non-deterministically guesses the accepting state $a=$ $\delta^{*}\left(s, w w^{R}\right)$ without reading any input.
- State (p, q) means the following:
- The current state resulting from executing M on the input string w starting from state s is now p.
- The guess for the current state resulting from executing M in reverse on the input string w starting at some accepting state $a \in A$ is now state q.
- N accepts w if and only if the input string w leads both the normal and reverse copy of M to some "halfway" state $h \in Q$.

We can formally prove that N accepts the correct language.

Lemma 1. For any $n \geq 0$, if $x \in \Sigma^{*}$ with $|x|=n$, then for any $q_{1}, q_{2} \in Q$:

$$
\delta^{* *}\left(\left(q_{1}, q_{2}\right), x\right)=\left\{\left(q_{3}, q_{4}\right) \in Q \times Q \mid \delta^{*}\left(q_{1}, x\right)=q_{3}, \delta^{*}\left(q_{4}, x^{R}\right)=q_{2}\right\}
$$

Proof: Suppose the lemma holds for all $w \in \Sigma^{*}$ with $|w|<|x|$. If $|x|=0$ then $x=\epsilon . \delta^{*}\left(\left(q_{1}, q_{2}\right), \epsilon\right)=\left\{\left(q_{1}, q_{2}\right)\right\}$ (note that the only ϵ transition is from $\left.s^{\prime}\right)$. Since $\delta^{*}\left(q_{1}, \epsilon\right)=q_{1}$ and $\delta^{*}\left(q_{2}, \epsilon^{R}\right)=\delta^{*}\left(q_{2}, \epsilon\right)=q_{2}$, the lemma holds for this case.

If $|x|>0$ then $x=a w$ for $a \in \Sigma, w \in \Sigma^{*}$ with $|w|<|x|$. Then

$$
\begin{aligned}
\delta^{*}\left(\left(q_{1}, q_{2}\right), x\right) & =\delta^{* *}\left(\left(q_{1}, q_{2}\right), a x\right)=\bigcup_{\left(q^{\prime}, q^{\prime \prime}\right) \in \delta^{\prime}\left(\left(q_{1}, q_{2}\right), a\right)} \delta^{* *}\left(\left(q^{\prime}, q^{\prime \prime}\right), w\right)= \\
& =\bigcup_{q^{\prime \prime} \in Q, \delta\left(q^{\prime \prime}, a\right)=q_{2}} \delta^{* *}\left(\left(\delta\left(q_{1}, a\right), q^{\prime \prime}\right), w\right)
\end{aligned}
$$

By the inductive hypothesis, we know that

$$
\left.\delta^{\prime *}\left(\delta\left(q_{1}, a\right), q^{\prime \prime}\right), w\right)=\left\{\left(q_{3}, q_{4}\right) \in Q \times Q \mid \delta^{*}\left(\delta\left(q_{1}, a\right), w\right)=q_{3}, \delta^{*}\left(q_{4}, w^{R}\right)=q^{\prime \prime}\right\}
$$

But $\delta^{*}\left(\delta\left(q_{1}, a\right), w\right)=\delta^{*}\left(q_{1}, a w\right)=\delta^{*}\left(q_{1}, x\right)$. Likewise, since $\delta\left(q^{\prime \prime}, a\right)=q_{2}$, then

$$
\delta^{*}\left(q_{4}, x^{R}\right)=\delta^{*}\left(q_{4}, w^{R} a\right)=\delta\left(\delta^{*}\left(q_{4}, w^{R}\right), a\right)=\delta\left(q^{\prime \prime}, a\right)=q_{2}
$$

This proves the lemma.
Now suppose that for some $x \in \Sigma^{*}, x x^{R} \in L(M)$. Then $\delta^{*}(s, x)=h$ for some $h \in Q$ and $\delta^{*}\left(h, x^{R}\right)=a$ for some $a \in A$. By the lemma, $(h, h) \in \delta^{\prime *}((s, a), x)$. Since $(s, a) \in \epsilon-\operatorname{reach}\left(s^{\prime}\right)$, we have $(h, h) \in \delta^{*}\left(s^{\prime}, x\right)$. And since $(h, h) \in A^{\prime}$, we have $x \in L(N)$.

Conversely, suppose that $x \in L(N)$. Then for some $h \in Q,(h, h) \in \delta^{*}\left(s^{\prime}, x\right)$. If $x=\epsilon$, then

$$
\delta^{\prime *}\left(s^{\prime}, x\right)=\left\{s^{\prime}\right\} \cup\{(s, a) \mid a \in A\}
$$

Therefore $(h, h)=(s, a)$ for some $a \in A$, which implies that $s \in A$ and so $x x^{R}=\epsilon \epsilon^{R}=$ $\epsilon \in L(M)$.

If $x \neq \epsilon$ then $x=c w$ for some $c \in \Sigma$ and $w \in \Sigma^{*}$. Then:

$$
\delta^{* *}\left(s^{\prime}, x\right)=\delta^{* *}\left(s^{\prime}, c w\right)=\bigcup_{p \in \epsilon-\text { reach }\left(s^{\prime}\right)} \bigcup r \in \delta^{\prime}(p, c) \delta^{*}(r, w)
$$

Since s^{\prime} only has ϵ transitions, there must be some state $(s, a) \in \epsilon-\operatorname{reach}\left(s^{\prime}\right)$ such that:

$$
(h, h) \in \bigcup r \in \delta^{\prime}((s, a), c) \delta^{*}(r, w)=\delta^{* *}((s, a), c w)=\delta^{* *}((s, a), x)
$$

By the lemma, $\delta^{*}(s, x)=h$ and $\delta^{*}\left(h, x^{R}\right)=a$, so $\delta^{*}\left(s, x x^{R}\right)=a$. Since $a \in A$, we have $x x^{R} \in L(M)$.
4. Not to submit: Recall that for any language $L, \bar{L}=\Sigma^{*}-L$ is the complement of L. In particular, for any NFA $N, \overline{L(N)}$ is the complement of $L(N)$.

Let $N=(Q, \Sigma, \delta, s, A)$ be an NFA, and define the NFA $N_{\text {comp }}=(Q, \Sigma, \delta, s, Q \backslash A)$. In other words we simply complemented the accepting states of N to obtain $N_{\text {comp }}$. Note that if M is DFA then $M_{\text {comp }}$ accepts $\Sigma^{*}-L(M)$. However things are trickier with NFAs.
(a) Describe a concrete example of a machine N to show that $L\left(N_{\text {comp }}\right) \neq \overline{L(N)}$. You need to explain for your machine N what $\overline{L(N)}$ and $L\left(N_{\text {comp }}\right)$ are.
(b) Define an NFA that accepts $\overline{L(N)}-L\left(N_{\text {comp }}\right)$, and explain how it works.
(c) Define an NFA that accepts $L\left(N_{\text {comp }}\right)-\overline{L(N)}$, and explain how it works.

Hint: For all three parts it is useful to classify strings in Σ^{*} based on whether N takes them to accepting and non-accepting states from s.

Solved problem

4. Let L be an arbitrary regular language. Prove that the language $\operatorname{half}(L):=\{w \mid w w \in L\}$ is also regular.

Solution: Let $M=(\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts L. We define a new NFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ with ε-transitions that accepts half (L), as follows:

$$
\begin{aligned}
& Q^{\prime}=(Q \times Q \times Q) \cup\left\{s^{\prime}\right\} \\
& s^{\prime} \text { is an explicit state in } Q^{\prime} \\
& A^{\prime}=\{(h, h, q) \mid h \in Q \text { and } q \in A\} \\
& \delta^{\prime}\left(s^{\prime}, \varepsilon\right)=\{(s, h, h) \mid h \in Q\} \\
& \delta^{\prime}((p, h, q), a)=\{(\delta(p, a), h, \delta(q, a))\}
\end{aligned}
$$

M^{\prime} reads its input string w and simulates M reading the input string $w w$. Specifically, M^{\prime} simultaneously simulates two copies of M, one reading the left half of $w w$ starting at the usual start state s, and the other reading the right half of $w w$ starting at some intermediate state h.

- The new start state s^{\prime} non-deterministically guesses the "halfway" state $h=\delta^{*}(s, w)$ without reading any input; this is the only non-determinism in M^{\prime}.
- State (p, h, q) means the following:
- The left copy of M (which started at state s) is now in state p.
- The initial guess for the halfway state is h.
- The right copy of M (which started at state h) is now in state q.
- M^{\prime} accepts if and only if the left copy of M ends at state h (so the initial nondeterministic guess $h=\delta^{*}(s, w)$ was correct) and the right copy of M ends in an accepting state.

```
Rubric: 5 points =
    + 1 for a formal, complete, and unambiguous description of a DFA or NFA
            - No points for the rest of the problem if this is missing.
    + 3 for a correct NFA
            - -1 for a single mistake in the description (for example a typo)
    + 1 for a brief English justification. We explicitly do not want a formal proof of
        correctness, but we do want one or two sentences explaining how the NFA works.
```

