
CS/ECE 374] Fall 2019
Y Homework 2 Z

Solutions

1. Building NFAs. For each of the languages below, construct an NFA that accepts the
language. You may either draw the NFA or write out a formal transition function. In either
case, you need to label/explain your states and briefly argue why the NFA accepts the
correct language.

(a) All strings over Σ= {0, 1} that have two of the same characters at a distance 3 from
each other. E.g., 1011011, 10100.
Solution:

q0start

q1 q2 q3

t

q5 q6 q7

0,1
1

0

0,1 0,1

1

0,1 0,1

0
0,1

q0: Start state; we have not read the first matching character
q1: We read first matching character and it’s a 1
q2: We read any symbol so we have 1x .
q3: We read any symbol so we have 1x x .
q4: We read first matching character and it’s a 0
q5: We read any symbol so we have 0x .
q6: We read any symbol so we have 0x x .
t: We have found the matching characters at distance 3, any remaining suffix is ok

(b) All strings over Σ= {0,1, . . . , 9} that contain both 374 and 473 as substrings.
Solution:

q0start

q1 q2 q3 q4 q5

t

q6 q7 q8 q9 q10

Σ
3

4

7 4

4

4

Σ

7

3

7 3

3

3

Σ

7

4

CS/ECE 374 B Homework 2 Solutions Fall 2019

q0: Start state.
q1: We read first 3 in 374 first.
q2: We read 7 for substring 37.
q3: We read 4 in a string that has non overlapping 374 - 473.
q4: We read a 4, starting the substring 473 after reading 374 (possibly overlap).
q5: We read a 7 in the 473 substring after 374.
q6: We read first 4 in 473 first.
q7: We read 7 for substring 47.
q8: We read a 3 in a string that has non overlapping 473 - 374.
q9: We read a 3, starting the substring 374 after reading 473 (possibly overlap).
q10: We read a 7 in the 374 substring after 473.
t: We read a string that has both substrings 374 and 473.

2. NFAs to DFAs. For the following regular expressions, do the following steps:

• Construct an NFA corresponding to the regular expression using Thompson’s algorithm

• Use the incremental subset construction to convert the NFA to a DFA

• Create another DFA with fewer states to recognize the language

(a) (ε+ 0)(1+ 10)∗

i. NFA:

a

b c

d e

f

h

i j

k l m n

o p

g
ε

ε

0

ε

ε

ε

ε

ε

ε

ε

1

1 ε 0

ε

ε

ε

ε

ε

ii. DFA from imcremental subset construction:

2

CS/ECE 374 B Homework 2 Solutions Fall 2019

a e

jl n

;
0 0

1
1

1

0

1
0

0,1

q′ ε− reach(q′) q′ ∈ A? δ′(q′,0) δ′(q′,1)
a abcd f ghikp Ø e jl
e e f ghikp Ø ; jl
jl h jlmop Ø n jl
n hiknop Ø ; jl

Note: the above table was not required but helps understand the solution
iii. DFA:

This language basically means there cannot be two consecutive 0s.

a b c

1

0

1 0

0,1

a: No 00 seen and last char was a 1
b: No 00 seen and last char a 0
c: 00 has been seen in the input

(b) 0∗(10∗10∗)∗

i. NFA:

3

CS/ECE 374 B Homework 2 Solutions Fall 2019

a b c d

e f g

l

m n o p q

kjih

r

ε 0

ε

ε

ε

ε

ε 1 ε ε 0 ε

ε

ε

ε

1
ε ε

0
ε ε

ε

ε

ε

ε

ii. DFA from imcremental subset construction:

a c

g m

j p

0

1

0

0

0

1

1

1

1

1
0

0

q′ ε− reach(q′) q′ ∈ A? δ′(q′,0) δ′(q′,1)
a abde f r Ø c g
c abcde f r Ø c g
g ghikl j m
j hi jkl j m

m e f noqr Ø p g
p e f nopqr Ø p g

iii. DFA:
The strings in the language should have even number of 1s.

4

CS/ECE 374 B Homework 2 Solutions Fall 2019

a b

0

1

1

0

a: Even number of 1’s seen
b: Odd number of 1’s seen

3. Palindromes. In both subproblems below, you need to formally specify the NFA N and
formally prove that it accepts the language required by the problem.

(a) Given a DFA M , define an NFA N such that L(N) = {x ∈ L(M)|x = xR}, i.e., N ′

accepts the strings in L(M) that are palindromes

Solution: This is impossible; e.g., if L(M) = Σ∗, then L(N) is the language of all
palindromes, which is not regular and therefore cannot be matched by an NFA. �

(b) Given a DFA M , define an NFA N such that L(N) = {x ∈ Σ∗|x xR ∈ L(M)}

Solution: Let M = (Σ,Q,δ, s, A) be the given DFA. We construct the NFA N =
(Σ,Q′,δ′, s′, A′) from M as follows.

Q′ = (Q×Q)∪ {s′}
s′ is an explicit state in Q′

A′ = {(h, h) | h ∈Q}
δ′(s′,ε) = {(s, a) | a ∈ A}

δ′((p, q), a) =
��

δ(p, a), q′
� �

� δ(q′, a) = q
	

for p, q ∈Q, a ∈ Σ

N simultaneously simulates two copies of M on the input string: one that runs
normally and one that runs in reverse. To run the normal copy of M on some input
symbol, N simply chooses the next state as defined by M ’s transition function. To
run the reverse copy of M on some input symbol, N non-deterministically guesses
the previous state from which taking the input symbol transition leads to the current
state in the reverse copy.

• The new start state s′ non-deterministically guesses the accepting state a =
δ∗(s, wwR) without reading any input.

• State (p, q) means the following:
– The current state resulting from executing M on the input string w starting
from state s is now p.

– The guess for the current state resulting from executing M in reverse on the
input string w starting at some accepting state a ∈ A is now state q.

• N accepts w if and only if the input string w leads both the normal and reverse
copy of M to some "halfway" state h ∈Q.

We can formally prove that N accepts the correct language.

5

CS/ECE 374 B Homework 2 Solutions Fall 2019

Lemma 1. For any n≥ 0, if x ∈ Σ∗ with |x |= n, then for any q1, q2 ∈Q:

δ′∗((q1, q2), x) = {(q3, q4) ∈Q×Q|δ∗(q1, x) = q3,δ∗(q4, xR) = q2}

Proof: Suppose the lemma holds for all w ∈ Σ∗ with |w| < |x |. If |x | = 0 then
x = ε. δ′∗((q1, q2),ε) = {(q1, q2)} (note that the only ε transition is from s′). Since
δ∗(q1,ε) = q1 and δ∗(q2,εR) = δ∗(q2,ε) = q2, the lemma holds for this case.

If |x |> 0 then x = aw for a ∈ Σ, w ∈ Σ∗ with |w|< |x |. Then

δ′∗((q1, q2), x) = δ′∗((q1, q2), ax) =
⋃

(q′,q′′)∈δ′((q1,q2),a)

δ′∗((q′, q′′), w) =

=
⋃

q′′∈Q,δ(q′′,a)=q2

δ′∗((δ(q1, a), q′′), w)

By the inductive hypothesis, we know that

δ′∗(δ(q1, a), q′′), w) = {(q3, q4) ∈Q×Q|δ∗(δ(q1, a), w) = q3,δ∗(q4, wR) = q′′}

But δ∗(δ(q1, a), w) = δ∗(q1, aw) = δ∗(q1, x). Likewise, since δ(q′′, a) = q2, then

δ∗(q4, xR) = δ∗(q4, wRa) = δ(δ∗(q4, wR), a) = δ(q′′, a) = q2

This proves the lemma. �

Now suppose that for some x ∈ Σ∗, x xR ∈ L(M). Then δ∗(s, x) = h for some
h ∈ Q and δ∗(h, xR) = a for some a ∈ A. By the lemma, (h, h) ∈ δ′∗((s, a), x). Since
(s, a) ∈ ε − reach(s′), we have (h, h) ∈ δ′∗(s′, x). And since (h, h) ∈ A′, we have
x ∈ L(N).

Conversely, suppose that x ∈ L(N). Then for some h ∈ Q, (h, h) ∈ δ′∗(s′, x). If
x = ε, then

δ′∗(s′, x) = {s′} ∪ {(s, a)|a ∈ A}

Therefore (h, h) = (s, a) for some a ∈ A, which implies that s ∈ A and so x xR = εεR =
ε ∈ L(M).

If x 6= ε then x = cw for some c ∈ Σ and w ∈ Σ∗. Then:

δ′∗(s′, x) = δ′∗(s′, cw) =
⋃

p∈ε−reach(s′)

⋃

r ∈ δ′(p, c)δ∗(r, w)

Since s′ only has ε transitions, there must be some state (s, a) ∈ ε− reach(s′) such
that:

(h, h) ∈
⋃

r ∈ δ′((s, a), c)δ∗(r, w) = δ′∗((s, a), cw) = δ′∗((s, a), x)

By the lemma, δ∗(s, x) = h and δ∗(h, xR) = a, so δ∗(s, x xR) = a. Since a ∈ A, we
have x xR ∈ L(M).

4. Not to submit: Recall that for any language L, L = Σ∗ − L is the complement of L. In
particular, for any NFA N , L(N) is the complement of L(N).

Let N = (Q,Σ,δ, s, A) be an NFA, and define the NFA Ncomp = (Q,Σ,δ, s,Q \ A). In
other words we simply complemented the accepting states of N to obtain Ncomp. Note that
if M is DFA then Mcomp accepts Σ∗ − L(M). However things are trickier with NFAs.

6

CS/ECE 374 B Homework 2 Solutions Fall 2019

(a) Describe a concrete example of a machine N to show that L(Ncomp) 6= L(N). You
need to explain for your machine N what L(N) and L(Ncomp) are.

(b) Define an NFA that accepts L(N)− L(Ncomp), and explain how it works.

(c) Define an NFA that accepts L(Ncomp)− L(N), and explain how it works.

Hint: For all three parts it is useful to classify strings in Σ∗ based on whether N takes
them to accepting and non-accepting states from s.

7

CS/ECE 374 B Homework 2 Solutions Fall 2019

Solved problem

4. Let L be an arbitrary regular language. Prove that the language half(L) := {w | ww ∈ L} is
also regular.

Solution: Let M = (Σ,Q, s, A,δ) be an arbitrary DFA that accepts L. We define a new NFA
M ′ = (Σ,Q′, s′, A′,δ′) with ε-transitions that accepts half(L), as follows:

Q′ = (Q×Q×Q)∪ {s′}
s′ is an explicit state in Q′

A′ = {(h, h, q) | h ∈Q and q ∈ A}

δ′(s′,ε) = {(s, h, h) | h ∈Q}

δ′((p, h, q), a) =
��

δ(p, a), h,δ(q, a)
�	

M ′ reads its input string w and simulates M reading the input string ww. Specifically, M ′

simultaneously simulates two copies of M , one reading the left half of ww starting at the
usual start state s, and the other reading the right half of ww starting at some intermediate
state h.

• The new start state s′ non-deterministically guesses the “halfway” state h= δ∗(s, w)
without reading any input; this is the only non-determinism in M ′.

• State (p, h, q) means the following:

– The left copy of M (which started at state s) is now in state p.
– The initial guess for the halfway state is h.
– The right copy of M (which started at state h) is now in state q.

• M ′ accepts if and only if the left copy of M ends at state h (so the initial non-
deterministic guess h = δ∗(s, w) was correct) and the right copy of M ends in an
accepting state.

�

Rubric: 5 points =
+ 1 for a formal, complete, and unambiguous description of a DFA or NFA

– No points for the rest of the problem if this is missing.

+ 3 for a correct NFA
– −1 for a single mistake in the description (for example a typo)

+ 1 for a brief English justification. We explicitly do not want a formal proof of
correctness, but we do want one or two sentences explaining how the NFA works.

8

