
CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

CS/ECE 374] Fall 2019 / Section B
Y Homework 1 Z

Due Tuesday, September 10, 2019 at 8pm

• This homework can be solved in a group of up to three students. Make sure that all three
names and NetIDs appear on the paper, and that you mark all the group members in
Gradescope

1. Rules are meant to be broken. An English spelling rule that is sometimes taught in school
is: “i before e except after c.” It can be used to remember what order to put the e and i in
words such as believe or receive. But it turns out that this rule is also frequently wrong!

(a) Create a regular expression over the alphabet Σ = {a,b,c, . . . ,z} that describes
strings that violate this principle. The corresponding language should include the
words feign (e before i) and concierge (i before e after c), but not the words tie, conceit
(rule is followed), banana, or reminder (no instance of ei or ie. You may use the
shorthand [a−d] to denote a range of symbols (i.e., a+b+c+d) and [^e] to denote
all symbols except e.
Solution: (ei+[a-z]*(cie+[^c]ei]))[a-z]*

(b) Construct a DFA that recognizes the language above. You may use either a graphical
representation or a formal listing of the states, transitions, and the starting and
accepting states. In either case, describe what each of your states means and argue
why you capture all the cases.
Solution:

sstart

c ci t

e

c

[^ce]

e

i

c

^i i

e

^i

e

^e

[a-z]

Now we define the DFA.
M = (Σ,Q, s, A,δ)
Σ= {a, b, ..., z}
Q = {s, c, ci, e, t}
s = s
A= {t}

1

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

δ(q, a) =

δ(s, ˆ[ce]) = s

δ(s, c) = c

δ(s, e) = e

δ(c, c) = c

δ(c, ˆi) = s

δ(c, i) = ci

δ(e, e) = e

δ(e, ˆi) = s

δ(e, i) = t

δ(ci, ˆe) = s

δ(ci, e) = t

δ(t, [a− z]) = t
s: Start state and we have not just read e or c.
c: We just read a c.
e: We just read an e without substring ci immediately prior.
ci: We just read a i, giving us current substring ci.
t: We found substring cie or ei which breaks the rule.

(c) Construct a DFA that recognizes words that both break the rules and follow it, within
the same word! You are looking for words such as tietei (not actually a word) that has
the i–e pair in both the right and the wrong order at different points in the word. You
may either use the product construction between the DFA in the previous part and
another one, or create a new DFA directly. In both cases, explain what your states are
and argue briefly why your DFA is correct.
Solution:

Define M2 that accepts strings that have and follow the rule.
M2= (Σ2,Q2, s2, A2,δ2)
Σ2 = {a, b, ..., z}
Q2 = {s2, c2, ce2, i2, t2}
s = s2
A= {t2}

2

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

δ(q, a) =

δ2(s2, ˆ[ci]) = s2

δ2(s2, c) = c2

δ2(s2, i) = i2
δ2(c2, c) = c2

δ2(c2, ˆe) = s2

δ2(c2, e) = ce2

δ2(i2, i) = i2
δ2(i2, ˆe) = s2

δ2(i2, e) = t2

δ2(ce2, ˆi) = s

δ2(ce, i) = t2

δ2(t2, [a− z]) = t2

s2: Start state and we have not just read c or i.
c2: We just read a c.
i2: We just read an i without substring ce immediately prior..
ce2: We just read an e, giving substring ce.
t2: We found substring cei or ie which follows the rule.

Let the DFA from 1.b. be M1 Now do product construction for M ′ = M1 ×M2

M ′ = (Σ′,Q′, s′, A′,δ′)
Σ′ = {a, b, ..., z}
Q′ =Q1 ×Q2
s′ = (s1, s2)
A′ = {(t1, t2)}
δ′((q1, q2), a) = (δ1(q1, a),δ2(q2, a))

The states in the combined DFA are keeping track of the current substring, and once
the rule is simultaneously broken and followed in the same word, we accept the state
(t1, t2) since this indicates both types of substring were found.

(d) (Not for submission) Create a regular expression that specifies the language from the
previous part. Use it to find words in a dictionary (often stored in /usr/share/dict/words

on Unix-like systems, e.g., MacOS or the EWS Linux machines) in this language.
Solution:
([a-z])*(cie + ^cei)([a-z])*(cei + ^cie)([a-z])* + ([a-z])*(cei
+ ^cie)([a-z])*(cie + ^cei)([a-z])* + ([a-z])*(iei + eie)([a-
z])*

3

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

2. For each language described below, over the alphabet {0, 1}, write (1) a regular expression
for the language, and (2) a DFA for the language. Remember to explain the states in your
DFA.

(a) All strings that start and end with a different symbol
Solution: 1(0+1)∗0 + 0(0+1)∗1

q0: We have not read anything yet.
q1: The first character in the string was a 0, and we just read a 0.
q2: The first character in the string was a 0, and we just read a 1.
q3: The first character in the string was a 1, and we just read a 1.
q4: The first character in the string was a 1, and we just read a 0.

(b) All strings that do not contain the substring 101
Solution: (0∗11∗00)∗(0∗+0∗11∗+0∗11∗0)

q0: Neither of the last two characters read was a 1.
q1: The last character read was 1 (but we as yet have not read 101).
q2: We just read the substring 10.
q3: We have read the substring 101.

(c) All strings that do not contain the subsequence 101. E.g., the string 111100001111
would not be in the language because it contains the subsequence noted in bold.

4

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

Solution: 0∗1∗0∗ (To prevent the subsequence 101 from occurring in the string, we
must require that there be no 0s between any 1s—and the only way this will be true
is if all 1s are adjacent to each other.)

q0

0

q11

1

q20

0

q31

0,1

q0: We have read zero or more 0’s so far.
q1: We have read zero or more 0’s followed by one or more 1’s
q2: We have read zero or more 0’s followed by one or more 1’s, followed by one or
more 0’s
q3: We have found a subsequence 101

5

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

3. Handcrafted artisanal DFAs. Come up with three DFAs M1, M2, M3 over the alphabet
Σ= {0,1} that satisfy the following conditions:

(a) |Q1|> 2 and |Q2|> 2

(b) M1 and M2 use the minimal number of states for recognizing L(M1) and L(M2).

(c) L(M1) 6= L(M2)

(d) M3 recognizes L(M1)∩ L(M2)

(e) |L(M3)|=∞
(f) |Q3|< |Q1| × |Q2|

Your solution should give a description of each of the three languages, and an explanation
of the states in each DFA. You also need to argue why your construction satisfies each of
the points above.

Solution (Not Unique):

M1 accepts the strings in which every run of 0s has length at least 3.

sstart a b c

d

0

0 0 0

1 1

1

0,1

0

• s: We did not just read a 0.

• a: We’ve read one 0 since the last 1 or the start of the string.

• b: We’ve read two 0s since the last 1 or the start of the string.

• c: We’ve read at least three 0s since the last 1 or the start of the string.

• d: We’ve read the substring 01 or 001; reject.

M2 accepts the strings in which every run of 0s has length at least 4.

6

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

sstart a b c d

e

0

0 0 0 0

1 1 1

0,1

0

1

• s: We did not just read a 0.

• a: We’ve read one 0 since the last 1 or the start of the string.

• b: We’ve read two 0s since the last 1 or the start of the string.

• c: We’ve read three 0s since the last 1 or the start of the string.

• c: We’ve read at least four 0s since the last 1 or the start of the string.

• d: We’ve read the substring 01 or 001 or 0001; reject.

Obviously, (a) and (c) are satisfied; M1 has 5 states, M1 has 6 states, and L(M1) 6= L(M2).
Moreover, for M1, 5 states are the minimum amount of states necessary to include all
strings in which every run of 0s has length at least 3. s, a, b, c are used as counter for the
number of consecutive 0s and e serves as a bad states that indicates less than 3 0s are
detected in a single run. Similarly, M2 is optimal when 6 states are used due to an extra
counter state compared with M1, so (b) is also satisfied.

In this setup, M1∩M2 = M2, so let M3 = M2. Therefore, M3 recognizes L(M1)∩ L(M2)
and (d) is satisfied. L{M3} denotes the language that contains all string in which every
run of 0s has length at least 4 and there are infinite number of such finite strings, so
L{M3}=∞ and (e) is satisfied.

|Q3| = |Q2| = 6 < |Q1| × |Q2| = 30, so (f) is also satisfied. In conclusion, the
constructions aboves for M1, M2, M3 satisfied all six requirements.

�

7

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

Solved problem

4. C comments are the set of strings over alphabet Σ= {*,/,A, �, �} that form a proper
comment in the C program language and its descendants, like C++ and Java. Here �

represents the newline character, � represents any other whitespace character (like
the space and tab characters), and A represents any non-whitespace character other
than * or /.1 There are two types of C comments:

• Line comments: Strings of the form // · · · �.
• Block comments: Strings of the form /* · · ·*/.

Following the C99 standard, we explicitly disallow nesting comments of the same
type. A line comment starts with // and ends at the first �after the opening //.
A block comment starts with /* and ends at the the first */ completely after the
opening /*; in particular, every block comment has at least two *s. For example,
each of the following strings is a valid C comment:

• /***/
• //�//� �

• /*///�*� �**/
• /*�//� ��*/

On the other hand, none of the following strings is a valid C comments:

• /*/
• //�//� �� �

• /*�/*�*/�*/

i. Describe a DFA that accepts the set of all C comments.
ii. Describe a DFA that accepts the set of all strings composed entirely of blanks (�),

newlines (�), and C comments.

You must explain in English how your DFAs work. Drawings or formal descriptions
without English explanations will receive no credit, even if they are correct.

1The actual C commenting syntax is considerably more complex than described here, because of character and
string literals.

• The opening /* or // of a comment must not be inside a string literal (“ · · ·“) or a (multi-)character literal
(’ · · ·’).

• The opening double-quote of a string literal must not be inside a character literal (’"’) or a comment.
• The closing double-quote of a string literal must not be escaped (\")
• The opening single-quote of a character literal must not be inside a string literal (" · · ·’ · · ·") or a comment.
• The closing single-quote of a character literal must not be escaped (\’)
• A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.

For example, the string "/*\\\"*/"/*"/*\"/*"*/ is a valid string literal (representing the 5-character string
/*\"*/, which is itself a valid block comment!) followed immediately by a valid block comment. For this homework
question, just pretend that the characters ’, ", and \ don’t exist.
Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.
Some C and C++ compilers do support nested block comments, in violation of the language specification. A few

other languages, like OCaml, explicitly allow nesting block comments.

8

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

Solution:

(a) The following eight-state DFA recognizes the language of C comments. All
missing transitions lead to a hidden reject state.

/*A◇

*

/

/

↲

*

*

/

A◇↲

/A◇↲
s /

// L

/* /** B

The states are labeled mnemonically as follows:
• s — We have not read anything.
• / — We just read the initial /.
• // — We are reading a line comment.
• L — We have read a complete line comment.
• /* — We are reading a block comment, and we did not just read a * after

the opening /*.
• /** — We are reading a block comment, and we just read a * after the

opening /*.
• B — We have read a complete block comment.

(b) By merging the accepting states of the previous DFA with the start state and
adding white-space transitions at the start state, we obtain the following six-state
DFA. Again, all missing transitions lead to a hidden reject state.

/*A◇

*

/

/↲

*
/

A◇↲

s /

//

/*/**

◇↲

/A◇↲*

The states are labeled mnemonically as follows:
• s — We are between comments.
• / — We just read the initial / of a comment.
• // — We are reading a line comment.
• /* — We are reading a block comment, and we did not just read a * after

the opening /*.

9

CS/ECE 374 Homework 1 (due September 10) Fall 2019 / Section B

• /** — We are reading a block comment, and we just read a * after the
opening /*.

�

Rubric: 10 points = 5 for each part, using the standard DFA design rubric (scaled)

Rubric (DFA design): For problems worth 10 points:

• 2 points for an unambiguous description of a DFA, including the states set Q, the
start state s, the accepting states A, and the transition function δ.

– For drawings: Use an arrow from nowhere to indicate s, and doubled
circles to indicate accepting states A. If A = ∅, say so explicitly. If your
drawing omits a reject state, say so explicitly. Draw neatly! If we can’t
read your solution, we can’t give you credit for it,.

– For text descriptions: You can describe the transition function either
using a 2d array, using mathematical notation, or using an algorithm.

– For product constructions: You must give a complete description of the
states and transition functions of the DFAs you are combining (as either
drawings or text), together with the accepting states of the product DFA.

• Homework only: 4 points for briefly and correctly explaining the purpose of
each state in English. This is how you justify that your DFA is correct.

– For product constructions, explaining the states in the factor DFAs is
enough.

– Deadly Sin: (“Declare your variables.”) No credit for the problem if the
English description is missing, even if the DFA is correct.

• 4 points for correctness. (8 points on exams, with all penalties doubled)

– −1 for a single mistake: a single misdirected transition, a single missing or
extra accept state, rejecting exactly one string that should be accepted, or
accepting exactly one string that should be accepted.

– −2 for incorrectly accepting/rejecting more than one but a finite number
of strings.

– −4 for incorrectly accepting/rejecting an infinite number of strings.

• DFA drawings with too many states may be penalized. DFA drawings with
significantly too many states may get no credit at all.

• Half credit for describing an NFA when the problem asks for a DFA.

10

