Bonus Homework

CS/ECE 374 B

Due 8 p.m., Wednesday, December 11 December 18

- This is a bonus homework; solving it is not required
- This homework will not be graded until after the final
- The grades in this homework, as with all bonus grades, will not be used in initial letter grade computation
- This homework will not be graded unless it has the potential to improve your letter grade. E.g., if your worst three homework scores are 5,7 , and 8 , this homework can at most improve your final score by 1%. If an extra 1% will not change your letter grade, we might not grade your homework.
- As always, you need to provide justification that your algorithm is correct. If you use a greedy strategy, prove that your greedy strategy produces an optimal solution.

Question 1: Scoring Trees \qquad 10 points
In this problem, you will be considering a binary tree with a score assigned to each node. Given a subset of the tree nodes, the score of that subset is the sum of the score of the nodes in the subset that do not also have a parent inside the subset. For example, in the tree below, the highlighted nodes have a score of $8+1=9$ because the nodes 8 and 1 do not have parents in the subset, whereas -5 and 2 do not count because their parents are selected.

Design and analyze an efficient algorithm that, given a tree T, the scores at each node, and a number k, finds maximum score of any subset of size k.

Question 2: Searching for an Exit
You are given a directed graph $G=(V, E)$ with non-negative scores on both vertices and edges: $\ell: V \cup E \rightarrow \mathbb{R}+$. The cost of a path $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}$ is the sum of the scores of both edges and vertices:

$$
\sum_{i=1}^{n} \ell\left(v_{i}\right)+\sum_{i=1}^{n-1} \ell\left(v_{i} \rightarrow v_{i+1}\right)
$$

You are given a source node s and a set of target nodes T. Design and analyze an efficient algorithm to find the cost of the least-cost path from s to some node in T.

Question 3: Building a Matrix
10 points
You are given two arrays $C[1 . . n]$ and $R[1 . . n]$ of non-negative integers. Design and analyze an efficient algorithm to construct a binary matrix (i.e., so that each entry is 0 or 1) where the i th row adds up to $R[i]$ and the j th column adds up to $C[j]$, or output that this is impossible. For example, given $R=[1,3,1,3,3]$ and $C=[2,2,1,2,4]$, you might produce the matrix:

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Note that there may be multiple possible matrices that work; your algorithm can return any of them. If the solution is impossible you should return an error.

