Final Exam
Two page cheat sheet
Conflict Mon 8-11
Structure
20pt T/F
6 x 10pt problems
1 x NP-hardness
2 x Midterm 1
2 x Midterm 2
1. Which of the following are a good English specifications of a recursive function that could possibly be used to compute the edit distance between two strings \(A[1..n]\) and \(B[1..n]\)?

 \(\text{Edit}(i, j)\) is the answer for \(i\) and \(j\).

 \(\text{Edit}(i, j)\) is the edit distance between \(A[i]\) and \(B[j]\).

 \[
 \text{Edit}[i, j] = \begin{cases}
 i & \text{if } j = 0 \\
 j & \text{if } i = 0 \\
 \text{Edit}[i-1, j-1] & \text{if } A[i] = B[j] \\
 \min \left\{ \begin{array}{l}
 1 + \text{Edit}[i-1, j-1] \\
 1 + \text{Edit}[i-1, j] \\
 1 + \text{Edit}[i, j-1]
 \end{array} \right\} & \text{otherwise}
 \end{cases}
 \]

 \(\text{Edit}[1..n, 1..n]\) stores the edit distances for all prefixes.

 \(\text{Edit}(i, j)\) is the edit distance between \(A[i..n]\) and \(B[j..n]\).

 \(\text{Edit}[i, j]\) is the value stored at row \(i\) and column \(j\) of the table.

 \(\text{Edit}(i, j)\) is the edit distance between the last \(i\) characters of \(A\) and the last \(j\) characters of \(B\).

 \(\text{Edit}(i, j)\) is the edit distance when \(i\) and \(j\) are the current characters in \(A\) and \(B\).

 \(\text{Edit}(i, j, k, l)\) is the edit distance between substrings \(A[i..j]\) and \(B[k..l]\).

 \([I \ don't \ need \ an \ English \ description; \ my \ pseudocode \ is \ clear \ enough!]\)
(f) Suppose we want to prove that the following language is undecidable.

\[\text{MUGGLE} := \{ \langle M \rangle \mid M \text{ accepts SCIENCE but rejects MAGIC} \} \]

Professor Potter, your instructor in Defense Against Models of Computation and Other Dark Arts, suggests a reduction from the standard halting language

\[\text{HALT} := \{ \langle M, w \rangle \mid M \text{ halts on inputs } w \} . \]

Specifically, suppose there is a Turing machine \text{DETECTOMUGGLETUM} that decides MUGGLE. Professor Potter claims that the following algorithm decides HALT.

\[
\text{DECEDEHALT}(\langle M, w \rangle):
\]
Encode the following Turing machine:

\[
\text{RUBBERDuck}(x): \begin{align*}
\text{run } M & \text{ on input } w \\
\text{if } x &= \text{MAGIC} \\
\text{return } & \text{FALSE} \\
\text{else} \\
\text{return } & \text{TRUE}
\end{align*}
\]

return \text{DETECTOMUGGLETUM}(\langle \text{RUBBERDuck} \rangle)

Which of the following statements is true for all inputs \langle M, w \rangle?

- If \(M \) rejects \(w \), then \text{RUBBERDuck} rejects \text{MAGIC}.
- If \(M \) accepts \(w \), then \text{DETECTOMUGGLETUM} accepts \langle \text{RUBBERDuck} \rangle.
- If \(M \) rejects \(w \), then \text{DECEDEHALT} rejects \langle M, w \rangle.
- \text{DECEDEHALT} decides the language \text{HALT}. (That is, Professor Potter’s reduction is actually correct.)
- \text{DECEDEHALT} actually runs (or simulates) \text{RUBBERDuck}.
(d) Which of the following languages are *decidable*?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Binary representations of all perfect squares

\[\{xy \in \{0,1\}^* \mid yx \text{ is a palindrome} \} \]

\[\{\langle M \rangle \mid M \text{ accepts the binary representation of every perfect square} \} \]

\[\{\langle M \rangle \mid M \text{ accepts a finite number of non-palindromes} \} \]

The set of all regular expressions that represent the language \(\{0,1\}^*\). (This is a language over the alphabet \(\{\emptyset, \varepsilon, 0, 1, *, +, (,)\}\).)

(e) Which of the following languages can be proved undecidable *using Rice’s Theorem*?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\{\langle M \rangle \mid M \text{ accepts a finite number of strings} \} \]

\[\{\langle M \rangle \mid M \text{ accepts both } \langle M \rangle \text{ and } \langle M \rangle^R \} \]

\[\{\langle M \rangle \mid M \text{ accepts exactly 374 palindromes} \} \]

\[\{\langle M \rangle \mid M \text{ accepts some string } w \text{ after at most } |w|^2 \text{ steps} \} \]
2. A **quasi-satisfying assignment** for a 3CNF boolean formula \(\Phi \) is an assignment of truth values to the variables such that *at most one* clause in \(\Phi \) does not contain a true literal. **Prove** that it is NP-hard to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

Quasi 3SAT

\[
(\overline{a} \lor b \lor c) \land (\overline{a} \lor c \lor \overline{v}) \land (\overline{b} \lor \overline{v} \lor \overline{d}) \land \ldots
\]

Given \(\Phi \) build \(\Phi' = \Phi \land (a \land b \land c) \land (\overline{a} \land b \land c) \land (\overline{a} \land c \land \overline{v}) \land (\overline{b} \land \overline{v} \land \overline{d}) \land \ldots \land (\overline{a} \land \overline{v} \land \overline{b} \land \overline{c}) \)

\(\Rightarrow \) If \(\Phi \) has sat assignment

- add \(a = b = c = \text{true} \)

 \(\rightarrow \) quasi sat assignment for \(\Phi' \)

 because all clauses in \(\Phi' \) ok

 exactly one new clause bad

\(\Leftarrow \) If \(\Phi' \) has quasi-sat assignment

- exactly one new clause bad

 so all old clauses good \(\rightarrow \) \(\Phi \) satisfied

Poly time
(a) Fix the alphabet $\Sigma = \{0, 1\}$. Describe and analyze an efficient algorithm for the following problem: Given an NFA M over Σ, does M accept at least one string? Equivalently, is $L(M) \neq \emptyset$?

(b) Recall from Homework 10 that deciding whether a given NFA accepts every string is NP-hard. Also recall that the complement of every regular language is regular; thus, for any NFA M, there is another NFA M' such that $L(M') = \Sigma^* \setminus L(M)$. So why doesn’t your algorithm from part (a) imply that $P=NP$?
Suppose we want to split an array $A[1..n]$ of integers into k contiguous intervals that partition the sum of the values as evenly as possible. Specifically, define the cost of such a partition as the maximum, over all k intervals, of the sum of the values in that interval; our goal is to minimize this cost. Describe and analyze an algorithm to compute the minimum cost of a partition of A into k intervals, given the array A and the integer k as input.

For example, given the array $A = [1, 6, -1, 8, 0, 3, 9, 8, 7, 4, 9, 8, 4, 8, 4, 8, 2]$ and the integer $k = 3$ as input, your algorithm should return the integer 37, which is the cost of the following partition:

$$\left[\begin{array}{c|c|c} 37 & ? & 36 \\ 1, 6, -1, 8, 0, 3, 9, 8 & 8, 7, 4, 9, 8 & 9, 4, 8, 4, 8, 2 \end{array} \right]$$

The numbers above each interval show the sum of the values in that interval.

Where is the next wall?

$$\text{MinCost}(i,k) = \begin{cases} \sum_{j=1}^{n} A[j] & \text{if } k = 1 \\ \min_{i \leq j \leq n+1} \left\{ \max_{k=1}^{n} \left\{ \sum_{j=1}^{k} A[j] \right\} + \text{MinCost}(j,k-1) \right\} & \text{if } i > n \\ \text{wall between } A[j-1] \text{ and } A[j] & \text{otherwise} \end{cases}$$

Memo: \[O(nk) \text{ time} \]