Undecidable — No algorithm

Problems about the behavior of machines/algos.

Halting problem: Given code \(<M>\) and a string \(w\), does \(M\) halt given input \(w\)?

SELF HALT: Given \(<M>\) does \(M\) halt on \(<M>\)?

Suppose \(SH\) decides \(SELF HALT\)

\[
\text{Accept}(SH) = SELF HALT \\
\text{Reject}(SH) = \emptyset^* \setminus SELF HALT
\]

\(SH^*(w)\):

- if \(SH(w)\) accepts: hang
- else: accept

Accept \((SH^*) = \text{Reject}(SH)\)

If \(SH^*\) accepts \(<SH^*>\) \(\Rightarrow\) \(SH\) accepts \(<SH^*>\)

\(\Rightarrow SH^*\) hangs on \(<SH^*>\)

\(\Rightarrow SH\) rejects \(<SH^*>\)

\(\Rightarrow SH^*\) accepts \(<SH^*>\)

\(HALT\) is undecidable.

Suppose \(H\) decides \(HALT\)

Write \(SH(w)\):

- verify \(w\) is encoding of some \(M\)
- return \(H(w, w)\).
NeverHALT: Given (M), does M always halt?

Suppose NH decides $NeverHALT$.

\[H(<M>, w) : \]

- **Write the following code:**

 \[M_w(x) : \]
 \[\text{return } M(w) \]
 \[\text{return } \neg NH(<M_w>) \]

- **Suppose M halts on w:**
 - Then M_w halts on all inputs.
 - So NH rejects $<M_w>$.
 - So H accepts $<M>, w$.

- **Suppose M hangs on w:**
 - So M_x hangs on all inputs.
 - So NH accepts $<M_w>$.
 - So H rejects $<M>, w$.
Rice's Theorem

Given \((M) \), does \(M \) accept \(w \)?

\[
\text{Accept}(M) = \{ w \mid M \text{ accepts } w \}
\]

Let \(L \) be any set of languages such that

- There is a program \(Y \) s.t. \(\text{Accept}(Y) \in L \)
- There is a program \(N \) s.t. \(\text{Accept}(N) \notin L \)

Then deciding if \(\text{Accept}(M) \in L \) is impossible for all \(M \)

Proof (sketch):
Assume \(\emptyset \notin L \)

Suppose \(Y \) accepts language in \(L \).

Suppose \(\text{MAGIC} \) decides if \(\text{Accept}(M) \in L \)

Build

\[
H(\langle M, w \rangle)
\]

write this code:

```
WTF(x):
    call M(w)
    return Y(x)
return MAGIC(\langle WTF \rangle)
```
• Does M accept ε?

 $L = \text{languages that contain } \varepsilon$

 $Y = \text{accept everything}$

 $N = \text{reject everything}$

• Does M accept ILLUMINATI?

• Does M accept only ILLUMINATI?

• Does M accept all palindromes whose length is 2^prime?

• Does M accept either \emptyset or Σ^*?

• Does M accept a non-regular language?

 $Y = \text{accept all palindromes, nothing else}$

 $N = \text{accept everything}$