HW 9 out later today
due next Tue

HW 10 out next week
due after break

HW 11 out after break
prob. not graded

① Simple computers (DFAs)
 What they can and can't do

② Algorithms - What general
 purpose computers can do

③ What computers can't
do (well)
CIRCUIT SAT

P - polynomial time \(O(n^{173}) \)

NP - nondeterministic poly time

For any instance where answer is YES, there is a proof verifiable in poly time.

Glass box

Can we set inputs so that output = T?

Only algo known: BRUTE FORCE \(\Theta(2^n) \)
To prove that \(X \) is NP-hard:
Prove that if \(X \) can be solved in poly time, then so can CIRCUIT SAT.

"Reduce CIRCUIT SAT to \(X \) in poly time"
Solve CIRCUIT SAT in poly time using subroutine for \(X \).

NP-hardness

black box
Only way to see if it works is brute force
$P = NP$?

Let's just assume not.

$NP \subseteq P$

Circuit SAT

NP-hard

If this problem can be solved in poly time, $P = NP$.

Cook-Levin:

Circuit SAT is NP-hard.
Let's just assume not Circuit SAT \(\Phi \) 3SAT

Yes

No
To prove that \(X \) is NP-hard:

Prove that if \(X \) can be solved in poly time, then so can \(\text{CIRCUIT SAT} \).

"Reduce \(\text{CIRCUIT SAT} \) to \(X \) in poly time."

Solve \(\text{CIRCUIT SAT} \) in poly time using subroutine for \(X \).

\[
(\text{Formula SAT}) \quad (a \wedge (b \Rightarrow c)) \vee (\overline{5} \Rightarrow (\overline{c} \wedge \overline{d}) \wedge b))
\]

Can we assign values to \(\text{vars} \) to make given formula \(T \)?
BSAT — Conjunctive Normal Form with 3 literals per clause

\[(\overline{a} \lor b \lor c) \land (\overline{b} \lor \overline{c} \lor d) \land (\overline{c} \lor \overline{v} \lor c \land d) \land (\overline{c} \lor \overline{v} \lor d)\]

Clause

Given an arbitrary circuit \(K \)

1. \(\overline{a} \lor b \lor c \Rightarrow \overline{D} \lor D \)

2. Transcribe the circuit

 \[(c=ab) \land (c=ab) \land (b=\overline{a}) \Rightarrow \]

3. Convert to 3CNF

 \[(c=ab) \Rightarrow (c \lor \overline{a} \lor b) \land (c \lor \overline{v} \lor a \lor x) \land (\overline{c} \lor \overline{v} \lor a \lor x) \land (\overline{c} \lor v \lor b \lor x) \land (\overline{c} \lor v \lor a \lor x)\]