HWO due tonight
HW1 dne rext Tuesday
Groups of upto 3 per problem (section A only)
Jeff's OH WF 1-2:15ish

"Pascaline" 1644

(4) 4

Machine Arithmétique Pl.I.

$$
\text { Fig. } 4 .
$$

${ }^{R}$

P. JB. Bradel del et Scutp.
23.

Deterministic Finite-state automaton DFA Finite-state machine Fsf
Q - Finite set of states
$s \in Q$ - start state
$A \subseteq Q$ - accepting states
\sum - input alphabet (finitrset)
$\delta: Q \times \Sigma \rightarrow Q$ - transition Function
$\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ extended transition function
M accepts $w \Leftrightarrow \delta^{*}(s, w) \in A$

$$
L(M)=\left\{w \in \sum^{*} \mid M \text { accepts } w\right\}
$$

State-transition graph for MultipleOf5

q	$\delta[q, 0]$	$\delta[q, 1]$	$A[q]$
0	0	1	TRUE
1	2	3	FALSE
2	4	0	FALSE
3	1	2	FALSE
4	3	4	FALSE

Do Something Cool $(S[][], A[], w[])$

$$
q<0
$$

For $i \leqslant 1$ ton

$$
q \Leftarrow \delta[q ; w[i]]
$$

return $A[q]$

$$
\begin{aligned}
& \begin{array}{l}
L=\{\text { strings } \\
\text { ate }=(\text { fond, last }\rangle \text {) }
\end{array} \\
& \text { state }=\text { (fonnd, last } \text { ?) ConTAINs11(w[1..n]): }
\end{aligned}
$$

0 : Last symbol read (fang) is 0 , haven seen 11
1: Last symbol road is 1 , haven t see 11
11: Hare seen 11

$$
\begin{aligned}
& \text { value }(w[1,-n])=\sum w[i]: 2^{n-i} \\
& \neq \sum_{i} w(i) \cdot 2^{i-1} \\
& \text { binary }(w)= \begin{cases}w=\varepsilon \\
2 \cdot \operatorname{bin} 2 r y(x)+a & w=x a\end{cases}
\end{aligned}
$$

