Theorem: Every string is perfectly cromulent

Proof: Let \(w \) be an arbitrary string.
Assume, for every string \(x \) such that \(|x| < |w| \), that \(x \) is perfectly cromulent.
There are two cases to consider.

- Suppose \(w = \epsilon \).

 Therefore, \(w \) is perfectly cromulent.

- Suppose \(w = ax \) for some symbol \(a \) and string \(x \).
 The induction hypothesis implies that \(x \) is perfectly cromulent.

 Therefore, \(w \) is perfectly cromulent.

In both cases, we conclude that \(w \) is perfectly cromulent. \(\square \)

Lemma: For all strings \(w, y, z : \) \((w \cdot y) \cdot z = w \cdot (y \cdot z) \)

Proof: Let \(w, y, z \) be arbitrary strings.

IH: Assume \((x \cdot y) \cdot z = x \cdot (y \cdot z) \) for all strings \(x \) shorter than \(w \).

There are two cases:

- \(w = \epsilon \) \(\Rightarrow (w \cdot y) \cdot z = (\epsilon \cdot y) \cdot z \)

 \(= y \cdot z \) \(\quad \text{[def \(\cdot \)]} \)

 \(= \epsilon \cdot (y \cdot z) \) \(\quad \text{[def \(\cdot \)]} \)

 \(= w \cdot (y \cdot z) \) \(\quad \text{[w = \(\epsilon \)]} \)

- \(w = ax \) for some symbol \(a \) and string \(x \)

 \((w \cdot y) \cdot z = ((a \cdot x) \cdot y) \cdot z \) \(\quad \text{[w = ax]} \)

 \(= (a \cdot (x \cdot y)) \cdot z \) \(\quad \text{[def \(\cdot \)]} \)

 \(= a \cdot (x \cdot (y \cdot z)) \) \(\quad \text{[def \(\cdot \)]} \)

 \(= (a \cdot (x \cdot (y \cdot z))) \) \(\quad \text{IH} \)

 \(= w \cdot (y \cdot z) \) \(\quad [w = ax] \)

Therefore, \((w \cdot y) \cdot z = w \cdot (y \cdot z) \)
\textbf{LANGUAGES} = sets of strings over \(\Sigma \)

\(\emptyset \)

\(\{ \varepsilon \} \cup \Sigma^* = \) all strings over \(\Sigma \)

\(\varepsilon \in \{ 0, 1 \}^* \) \(| w \) has even \# of 1s \(\varepsilon \in \{ \varepsilon, 00, 101, \ldots \} \)

\(\{ \text{BMO} \} \)

\(\{ \text{FINN, JAKE, ICEKING} \} \)

\(\varepsilon \in \{ 0, 1 \}^* \) \(w \) is binary for prime \#\(5 \)

\(L = A \cup B \) \quad \text{All Python programs}

\(L = A \cap B \) \quad \text{All Python programs that \(\infty \) loop}

\(L = \overline{A} = \Sigma^* \setminus A \)

\(L = A \cdot B = \{ x \cdot y \mid x \in A \text{ and } y \in B \} \)

\(\{ \text{FIRST, SECOND, THIRD} \} \cdot \{ \text{BASE, PLACE} \} \)

\(\{ 0 \}^* \cdot \{ 1 \}^* \)

\(\emptyset \cdot L = \emptyset \quad \varepsilon \cdot L = L \)

\(L^* = \text{Kleene star} = \{ \varepsilon \} \cup \varepsilon L \cup \varepsilon L \cup \ldots \)

\(w \in L^* \iff w = \varepsilon \text{ or } w = x \gamma \text{ for some } x \in L \quad \gamma \in L^* \)

Is \(L^* \) always infinite?

\(\emptyset^* = \{ \varepsilon \} \cup \emptyset \cup \emptyset \cup \ldots = \{ \varepsilon \} \)

\(\{ 0 \}^* = \{ \varepsilon \} \cup \{ \varepsilon \} \cdot \{ 0 \} \cup \ldots = \{ \varepsilon \} \)
Lemma 2.1. The following identities hold for all languages A, B, and C:

(a) $A \cup B = B \cup A$.
(b) $(A \cup B) \cup C = A \cup (B \cup C)$.
(c) $\emptyset \cdot A = A \cdot \emptyset = \emptyset$.
(d) $\{\varepsilon\} \cdot A = A \cdot \{\varepsilon\} = A$.
(e) $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
(f) $A \cdot (B \cup C) = (A \cdot B) \cup (A \cdot C)$.
(g) $(A \cup B) \cdot C = (A \cdot C) \cup (B \cdot C)$.

Lemma 2.2. The following identities hold for every language L:

(a) $L^* = \{\varepsilon\} \cup L^+ = L^* \cdot L^* = (L \cup \{\varepsilon\})^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup L \cup (L^* \cdot L^*)$.
(b) $L^+ = L \cdot L^* = L^* \cdot L = L^+ \cdot L^* = L^* \cdot L^+ = L \cup (L^* \cdot L^*)$.
(c) $L^+ = L^*$ if and only if $\varepsilon \in L$.

Lemma 2.3 (Arden's Rule). For any languages A, B, and L such that $L = A \cdot L \cup B$, we have $A^* \cdot B \subseteq L$. Moreover, if A does not contain the empty string, then $L = A \cdot L \cup B$ if and only if $L = A^* \cdot B$.

Regular languages

L is regular means either

- if $\varepsilon w3$
- else $A \cup B$

Sequencing

if $A \cdot B$

while

else

Regular expressions

$0 + 10^*$

$= \varepsilon 03 \cup (\varepsilon 15 \cdot (\varepsilon 05)^*)$
Alternating 0s and 1s

Good: 0, 1, 0, 101, 010101, 01010, ...

Bad: 11, 0100, 01101, ...

\[
\begin{align*}
\varepsilon + 0 \cdot (10)^* (1+\varepsilon) + 1 \cdot (01)^* (0+\varepsilon) &= (0 + \varepsilon)(10)^* (1 + \varepsilon)
\end{align*}
\]
Proof: Let R be an arbitrary regular expression. Assume that every regular expression smaller than R is perfectly cromulent. There are five cases to consider.

- Suppose $R = \emptyset$.

 Therefore, R is perfectly cromulent.

- Suppose R is a single string.

 Therefore, R is perfectly cromulent.

- Suppose $R = S + T$ for some regular expressions S and T.
 The induction hypothesis implies that S and T are perfectly cromulent.

 Therefore, R is perfectly cromulent.

- Suppose $R = S \cdot T$ for some regular expressions S and T.
 The induction hypothesis implies that S and T are perfectly cromulent.

 Therefore, R is perfectly cromulent.

- Suppose $R = S^*$ for some regular expression S.
 The induction hypothesis implies that S is perfectly cromulent.

 Therefore, R is perfectly cromulent.

In all cases, we conclude that w is perfectly cromulent.