Describe deterministic finite-state automata that accept each of the following languages over the alphabet $\Sigma = \{0, 1\}$. Describe briefly what each state in your DFAs means. Yes, these are exactly the same languages that you saw last Friday.

Either drawings or formal descriptions are acceptable, as long as the states Q, the start state s, the accept states A, and the transition function δ are all be clear. Try not to use too many states, but don’t try to use as few states as possible.

1. All strings containing the substring 000.
2. All strings not containing the substring 000.
3. All strings in which every run of 0s has length at least 3.
4. All strings in which all the 1s appear before any substring 000.
5. All strings containing at least three 0s.
6. Every string except 000. [Hint: Don’t try to be clever.]

Work on these later:

7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.
8. All strings containing at least two 0s and at least one 1.
9. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

*10. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)