Rice’s Theorem. Let \(\mathcal{L} \) be any set of languages that satisfies the following conditions:
- There is a Turing machine \(Y \) such that \(\text{Accept}(Y) \in \mathcal{L} \).
- There is a Turing machine \(N \) such that \(\text{Accept}(N) \notin \mathcal{L} \).

The language \(\text{AcceptIn}(\mathcal{L}) := \{ \langle M \rangle \mid \text{Accept}(M) \in \mathcal{L} \} \) is undecidable.

Prove that the following languages are undecidable using Rice’s Theorem:

1. \(\text{AcceptRegular} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is regular} \} \)
2. \(\text{AcceptIllini} := \{ \langle M \rangle \mid M \text{ accepts the string } \text{ILLINI} \} \)
3. \(\text{AcceptPalindrome} := \{ \langle M \rangle \mid M \text{ accepts at least one palindrome} \} \)
4. \(\text{AcceptThree} := \{ \langle M \rangle \mid M \text{ accepts exactly three strings} \} \)
5. \(\text{AcceptUndecidable} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is undecidable} \} \)

To think about later. Which of the following are undecidable? How would you prove that?

1. \(\text{Accept}\{\varepsilon\} := \{ \langle M \rangle \mid M \text{ accepts only the string } \varepsilon; \text{ that is, } \text{Accept}(M) = \{ \varepsilon \} \} \)
2. \(\text{Accept}\emptyset := \{ \langle M \rangle \mid M \text{ does not accept any strings; that is, } \text{Accept}(M) = \emptyset \} \)
3. \(\text{Accept}\emptyset := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is not an acceptable language} \} \)
4. \(\text{Accept=Reject} := \{ \langle M \rangle \mid \text{Accept}(M) = \text{Reject}(M) \} \)
5. \(\text{Accept}\neq\text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) \neq \text{Reject}(M) \} \)
6. \(\text{Accept}\cup\text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) \cup \text{Reject}(M) = \Sigma^* \} \)