CS/ECE 374: Algorithms & Models of

Computation, Fall 2018

More DP: Edit Distance and
Independent Sets in Trees

Lecture 14
October 16, 2018

CS/ECE 374 1 Fall 2018 1/51

How many subproblems?

Consider computing f(x,y) by recursive function + memoization.

x+y—1

f(x,y) = Z xxF(x+y—i,i—1),
i=1

f(0,y)=y f(x,0) = x.

How many distinct subproblems when computing f(n, n)?
(A) O(n)
(B) O(nlog n)
(C) O(n?)
(D) O(n®)
(E) The function is ill defined - it can not be computed.

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 2 /51

What is the running time for each subproblem?

Consider computing f(x,y) by recursive function + memoization.

x+y—1

f(x,y) = Z xxf(x+y—i,i—1),
i=1

f(0,y)=y f(x,0) = x.

The worst-case time to evaluate the output of a subproblem given
values for its recursive subproblems when computing f(n, n) is:

(A) O(n)

(B) O(nlog n)

(C) O(r?)

(D) O(n°)

(E) The function is ill defined - it can not be computed.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018

3/

51

What is the total running time?

Consider computing f(x,y) by recursive function + memoization.

x+y—1

f(x,y) = Z xxF(x+y—i,i—1),
i=1

f(0,y)=y f(x,0) = x.

The resulting algorithm when computing f(n, n) would take:
(A) O(n)
(B) O(nlog n)
(C) O(n?)
(D) O(n®)
(E) The function is ill defined - it can not be computed.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 4 /51

Recipe for Dynamic Programming

© Develop a recursive backtracking style algorithm A for given
problem.

@ Identify structure of subproblems generated by .A on an instance
I of size n

@ Estimate number of different subproblems generated as a
function of n. Is it polynomial or exponential in n?

@ If the number of problems is “small” (polynomial) then they
typically have some “clean” structure.

© Rewrite subproblems in a compact fashion.
© Rewrite recursive algorithm in terms of notation for subproblems.
o

Convert to iterative algorithm by bottom up evaluation in an
appropriate order.

@ Optimize further with data structures and/or additional ideas.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 5/ 51

A variation

Input A string w € X* and access to a language L C X* via
function IsStringinL(string x) that decides whether x
is in L, and non-negative integer k

Goal Decide if w € L using IsStringinL(string x) as a
black box sub-routine

Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

@ Is the string “isthisanenglishsentence” in English®?
o Is the string “isthisanenglishsentence” in English*?
e Is “asinineat” in English??

o Is “asinineat” in English*?

o Is “zibzzzad" in English'?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 6 /51

Recursive Solution

When is w € Lk?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 7 /51

Recursive Solution

When is w € Lk?

k=0 welkiffw=c¢

k=1 welkiffwel

k>1 welkifw=uvwithu € Landv € Lk

Chandra Chekuri (UIUC)

CS/ECE 374

Fall 2018 7 /51

Recursive Solution

When is w € Lk?
k=0 welkiffw=c¢
k=1 welkiffwel
k>1 welkifw=uvwithu€&Landv e Lk!
Assume w is stored in array A[l..n]
IsStringinLk(A[1..n], k) :

If (k=0)

If (n=0) Output YES
Else Ouput NO
If (k=1

Output IsStringinL(A[1..n])
Else

For =1 to n—1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO
Chandra Chekuri (UIUC)

CS/ECE 374

Fall 2018 7 /51

IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /51

IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /51

IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)
@ How much space?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /51

IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

@ How much space? O(nk) pause

@ Running time?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /51

IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

@ How much space? O(nk) pause

@ Running time? O(n%k)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /51

Naming subproblems and recursive equation

ISLk(i, h): a boolean which is 1 if A[i..n] is in L", 0 otherwise

Base case: ISLk(n + 1,0) = 1 interpreting A[n 4 1..n] as €

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 9 /51

Naming subproblems and recursive equation

ISLk(i, h): a boolean which is 1 if A[i..n] is in L", 0 otherwise
Base case: ISLk(n + 1,0) = 1 interpreting A[n 4 1..n] as €

Recursive relation:
e ISLk(i, h) = 1if 3i < j < n+ 1 such that
(ISLk(j, h — 1) = 1 and IsStringinL(A[i..(j — 1]) = 1)
o ISLk(i, h) = 0 otherwise

Alternately:
ISLk(i, h) = max;j<ny1 ISLk(j, h — 1)IsStringinL(A[i..(j — 1)]))

Output: ISLk(1, k)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 9 /51

Another variant

Question: What if we want to check if w € L for some
0 < i< k?Thatis, is w € UK L7?

1

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 10 / 51

Exercise

Definition

A string is a palindrome if w = wR.

Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 11 /51

Exercise

Definition

A string is a palindrome if w = wR.

Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of w that
is a palindrome.

MAHDYNAMICPROGRAMZLETMESHOWYOQOUTHEM has
MHYMRORMYHM as a palindromic subsequence

Chandra Chekuri (UIUC) CS/ECE 374 11 Fall 2018 11 /51

Exercise

Assume w is stored in an array A[l..n]

LPS(i,j): length of longest palindromic subsequence of A[i..j].

Recursive expression/code?

Chandra Chekuri (UIUC)

CS/ECE 374

Fall 2018 12 / 51

Part |

Edit Distance and Sequence Alignment

CS/ECE 374 Fall 2018 13 / 51

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 14 / 51

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings X1 X2 . .. X, and y1¥2 ... Ym What is a
distance between them?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 14 / 51

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings X1 X2 . .. X, and y1¥2 ... Ym What is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 14 / 51

Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

| A

FOOD — MOOD — MONOD — MONED — MONEY

\

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 15 / 51

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word

indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONEY

Chandra Chekuri (UIUC) CS/ECE 374 16

Fall 2018 16 / 51

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONEY

Formally, an alignment is a set M of pairs (i,) such that each index
appears at most once, and there is no “crossing”: i < i’ and i is
matched to j implies i’ is matched to j* > j. In the above example,

this is M = {(1,1), (2,2), (3, 3), (4,5) }.

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2018 16 / 51

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONEY

Formally, an alignment is a set M of pairs (i,) such that each index
appears at most once, and there is no “crossing”: i < i’ and i is
matched to j implies i’ is matched to j* > j. In the above example,
this is M = {(1,1),(2,2),(3,3), (4,5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2018 16 / 51

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 17 / 51

Applications

@ Spell-checkers and Dictionaries
@ Unix diff
© DNA sequence alignment ... but, we need a new metric

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 18 / 51

Similarity Metric

For two strings X and Y/, the cost of alignment M is

© [Gap penalty| For each gap in the alignment, we incur a cost 9.

@ [Mismatch cost| For each pair p and g that have been matched
in M, we incur cost apq; typically oy, = 0.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2018 19 / 51

Similarity Metric

For two strings X and Y/, the cost of alignment M is

© [Gap penalty| For each gap in the alignment, we incur a cost 9.

@ [Mismatch cost| For each pair p and g that have been matched
in M, we incur cost apq; typically oy, = 0.

Edit distance is special case when § = apq = 1.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2018 19 / 51

An Example

o clulr|rlaln|cl|e

olc|clu|r|r|le|n|c|e Cost = 0 + e
Alternative:

o clul|r|r aln|c|e

olc|lclulr|r|e nlic|e Cost = 36

Or a really stupid solution (delete string, insert other string):

o|Cc|u|rjrjaj/n,cj|e

c|C

u\r|rje|n

Cost = 196.

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 51

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

(A) 1
(B) 2
(©) 3
(D) 4
(E) 5

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 21 /51

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

373

(A) 1
(B) 2
(©) 3
(D) 4
(E) 5

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 22 /51

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

(A) 1
(B) 2
(©) 3
(D) 4
(E) 5

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 23 /51

Sequence Alignment

Input Given two words X and Y, and gap penalty é and
mismatch costs apgq

Goal Find alignment of minimum cost

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 24 / 51

Edit distance

Basic observation

Let X = axand Y = By

a, 3: strings.

x and y single characters.

Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

(87 X (87 X ax
or or

B y By B y

Observation
Prefixes must have optimal alignment!

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 25 /51

Problem Structure

Observation

Let X = x1Xp++*Xm and Y = y1y2 -+ + Yn. If (M, n) are not
matched then either the mth position of X remains unmatched or
the nth position of Y remains unmatched.

Q@ Case x,, and y,, are matched.
® Pay mismatch cost ay,,y, plus cost of aligning strings
Xp++Xm—1and y1 - Yn_1
@ Case X, is unmatched.
@ Pay gap penalty plus cost of aligning x1 +++X;—1 and y3 -+ - yn
© Case y, is unmatched.
@ Pay gap penalty plus cost of aligning x1 X, and y1 ++ - Yn—1

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 26 / 51

Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST|a, b]
give the cost of matching character a to character b.

EDIST (A[1..m], B[1..n])
If (m=0) return néd
If (n=0) return md
my = 6 + EDIST(A[1..(m — 1)], B[1..n])
my = 6 + EDIST(A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, m3)

Chandra Chekuri (UIUC) CS/ECE 374 27 Fall 2018 27 /51

Subproblems and Recurrence

Optimal Costs

Let Opt(i,) be optimal cost of aligning x; - - - x; and y; « - - y;.
Then

Olxy; + Opt(i — 1,5 — 1),
Opt(i,j) = min { § + Opt(i — 1,)),
d + Opt(i,j — 1)

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018

Subproblems and Recurrence

Optimal Costs

Let Opt(i,) be optimal cost of aligning x; - - - x; and y; « - - y;.
Then

Olxy; + Opt(i — 1,5 — 1),
Opt(i,j) = min { § + Opt(i — 1,)),
d + Opt(i,j — 1)

Base Cases: Opt(i,0) =6 - i and Opt(0,) =5 -

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018

DEED and DREAD HCD
NAEAD

CS/ECE 374 2 Fall 2018 29 /51

Memoizing the Recursive Algorithm

int M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])

EDIST (A[l..m], B[1..n])
If (M[i][J]] < oo) return MIJi][j] (* return stored value *)

If (m=0)
MIilli] = né
ElseIf (n=0)
MIillj] = mé
Else

my = § + EDIST(A[1..(m — 1)], B[1..n])
my = § + EDIST(A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
MIilLj] = min(rmy, m, ms)
return M[i][j]

Chandra Chekuri (UIUC) CS/ECE 374 30 Fall 2018 30 /51

Removing Recursion to obtain lterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do MJ[i,0] =ié
for j=1 to n do M|0,j] =jd

for i=1 to m do
for j=1 to n do
Oy + M[i —1][j — 1],
MI[i][j] = min < & + M[i — 1][j],
d+ M[illj — 1]

Fall 2018 31 /51

Chandra Chekuri (UIUC) CS/ECE 374

Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m], B[1..n])
int MJ[0..m][0..n]

for i=1 to m do
for j=1 to n do

MIillj] = min

for i=1 to m do MJ[i,0] =ié
for j=1 to n do M|0,j] =jd

Qxy; + M[i = 1][j — 1],
& + M[i — 1][j],
& + MIillj — 1]

_

Chandra Chekuri (UIUC) CS/ECE 374

31

Fall 2018

31 /51

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do MJ[i,0] =ié
for j=1 to n do M|0,j] =jd

for i=1 to m do
for j=1 to n do

oy + M[i = 1][j — 1],
MIillj] = min < § + M[i — 1][j],
6 + MI[il[j — 1]

© Running time is O(mn).
@ Space used is O(mn).

Chandra Chekuri (UIUC) CS/ECE 374 31 Fall 2018

31 /51

Matrix and DAG of Computation

oeRu

Figure: Iterative algorithm in previous slide computes values in row order.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 32 /51

DEED and DREAD

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 33 /51

Sequence Alignment in Practice

@ Typically the DNA sequences that are aligned are about 10°
letters long!

@ So about 10'? operations and 10 bytes needed
© The killer is the 10GB storage

© Can we reduce space requirements?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 34 /51

Optimizing Space

@ Recall

ax,-yj + M(i - l?j - 1)’
M(i,j) = min< § + M(i — 1,j),
o + M(’a./ - 1)

@ Entries in jth column only depend on (j — 1)st column and
earlier entries in jth column

© Only store the current column and the previous column reusing
space; N(i, Q) stores M(i,j — 1) and N(i, 1) stores M(i, j)

Chandra Chekuri (UIUC) CS/ECE 374 35 Fall 2018 35 /51

Computing in column order to save space

e

Figure: M(i,) only depends on previous column values. Keep only two
columns and compute in column order.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 36 / 51

Space Efficient Algorithm

for a1l i do N[i,0] = id
for j=1 to n do
N[0,1] = j& (* corresponds to M(0,j) *)
for i=1 to m do
Clxy; + N[i —1,0]
N[i,1] = min< 6 + N[i — 1,1]
d + NI[i, 0]
for i=1 to m do
Copy NI[i,0] = N[i, 1]

Running time is O(mn) and space used is O(2m) = O(m) \

Chandra Chekuri (UIUC) CS/ECE 374 37 Fall 2018 37 /51

Analyzing Space Efficiency

@ From the m X n matrix M we can construct the actual
alignment (exercise)

@ Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

© Space efficient computation of alignment? More complicated
algorithm — see notes and Kleinberg-Tardos book.

Chandra Chekuri (UIUC) CS/ECE 374 38 Fall 2018 38 /51

Part 1l

Longest Common Subsequence

Problem

CS/ECE 374 Fall 2018 39 /51

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

LCS between ABAZDC and BACBAD is l

Chandra Chekuri (UIUC) CS/ECE 374 40 Fall 2018 40 / 51

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

LCS between ABAZDC and BACBAD is 4 via ABAD l

Chandra Chekuri (UIUC) CS/ECE 374 40 Fall 2018 40 / 51

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

LCS between ABAZDC and BACBAD is 4 via ABAD l

Derive a dynamic programming algorithm for the problem.

Chandra Chekuri (UIUC) CS/ECE 374 40 Fall 2018 40 / 51

Part |11

Maximum Weighted Independent Set

in Trees

CS/ECE 374 Fall 2018 41 /51

Maximum Weight Independent Set Problem

Input Graph G = (V/, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 42 /51

Maximum Weight Independent Set Problem

Input Graph G = (V/, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: {B, D}

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 42 /51

Maximum Weight Independent Set in a Tree

Input Tree T = (V, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: 77

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 43 / 51

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, Vo, ..., V,
@ Find recursively optimum solutions without v,, (recurse on
G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn)-
© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 44 / 51

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, Vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn)-

© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 44 / 51

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, Vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn)-

© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for v, is root r of T?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 44 / 51

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum
solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum

solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 45 / 51

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum

solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 45 / 51

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum
solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them?

Chandra Chekuri (UIUC) CS/ECE 374 45 Fall 2018 45 / 51

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum
solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 45 Fall 2018 45 / 51

CS/ECE 374 46 Fall 2018 46 / 51

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) =

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 47 / 51

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max v child of » OPT (),
W(U) + Zv grandchild of u OPT(V)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 47 / 51

lterative Algorithm

© Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 48 / 51

lterative Algorithm

© Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 48 /

lterative Algorithm

MIS-Tree(T):

Let vi,V2,...,V, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; Mlvil,
w(v;) + Zvj grandchild of v; Mly;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 49 / 51

lterative Algorithm

MIS-Tree(T):

Let vi,V2,...,V, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; Mlvil,
w(v;) + Zvj grandchild of v; Mly;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Space:

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 49 / 51

lterative Algorithm

MIS-Tree(T):

Let vi,V2,...,V, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; Mlvil,
w(v;) + Zvj grandchild of v; Mly;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Space: O(n) to store the value at each node of T
Running time:

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 49 / 51

lterative Algorithm

MIS-Tree(T):

Let vi,V2,...,V, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; Mlvil,
w(v;) + Zvj grandchild of v; Mly;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take
O(n) time and there are n evaluations.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 49 / 51

lterative Algorithm

MIS-Tree(T):

Let vi,V2,...,V, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; Mlvil,
w(v;) + Zvj grandchild of v; Mly;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take
O(n) time and there are n evaluations.

@ Better bound: O(n). A value M[v;] is accessed only by its
parent and grand parent.

Chandra Chekuri (UIUC) CS/ECE 374 49 Fall 2018 49 / 51

CS/ECE 374 50 Fall 2018 50 / 51

Takeaway Points

© Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

@ Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

© The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 51 /51

	Edit Distance and Sequence Alignment
	Longest Common Subsequence Problem
	Maximum Weighted Independent Set in Trees

