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Fast Multiplication
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Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their

product.

Grade School Multiplication

Compute \partial product™ by multiplying each digit of y with x and

adding the partial products.

3141
x2718
25128
3141
21987
6282
8537238

4
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Time Analysis of Grade School Multiplication

@ Each partial product: (n)

@ Number of partial products: (n)
© Addition of partial products:  (n?)
Q Total time:  (n?)
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A Trick of Gauss

Carl Friedrich Gauss: 1777{1855 \Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c +di) =ac — bd + (ad + bc)i
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A Trick of Gauss

Carl Friedrich Gauss: 1777{1855 \Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c +di) =ac — bd + (ad + bc)i

How many multiplications do we need?
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A Trick of Gauss

Carl Friedrich Gauss: 1777{1855 \Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c +di) =ac — bd + (ad + bc)i

How many multiplications do we need?
Only 3! If we do extra additions and subtractions.

Compute ac; bd; (a+ b)(c +d). Then
(ad +bc) =(a+b)(c +d) —ac — bd
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Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits
Q@ X =Xn_1Xp2:Xoandy = Yn_1Yn-2::1Yo
Q X =Xp_1:::Xn=20:::0 4+ Xpn=2_1:::Xp
Q@ X = 10"72x, + Xg Where X, = Xp_1::: Xnp=2 and
XR = Xn=2—_1:::Xo
@ Similarly y = 10"*?y, + yg where y, = Yn_1:::VYn= and
YR = Yn=2-1::1Yo0
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1234 x 5678

(100 x 12 + 34) x (100 x 56 + 78)
10000 x 12 x 56

+100 x (12 x 78 + 34 x 56)

+34 x 78
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Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Q X =Xn_1Xn—2:::Xoandy =Yn_1Y¥n—2:11Yo
@ X = 10"2x, + Xg Where X, = Xn_1 ::: Xn=2 and
XR = Xn=2—1:::Xo
Q@ y = 10"y + yg where y = y,_1:::Yn= and
YR = Yn=2-1:11Yo
Therefore

xy = (10"%x_ + xg)(10"?y, + yr)

= 10"x YL + 10"2(X YR + XRYL) + XRYR
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Time Analysis

Xy = (1On:2XL + XR)(lon:ZyL + YRr)

= 10"x Y. + 10" (X YR + XRYL) + XRYR

4 recursive multiplications of number of size n=2 each plus 4
additions and left shifts (adding enough 0’s to the right)
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Time Analysis

Xy = (1On:2XL + XR)(lon:ZyL + YRr)

= 10"x Y. + 10" (X YR + XRYL) + XRYR

4 recursive multiplications of number of size n=2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T(n) =4T (n=2) + O(n) TA)=0(1)
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Time Analysis

Xy = (1On:2XL + XR)(lon:ZyL + YRr)

= 10"x Y. + 10" (X YR + XRYL) + XRYR

4 recursive multiplications of number of size n=2 each plus 4
additions and left shifts (adding enough 0’s to the right)
T(n) =4T (n=2) + O(n) TA) =001

T(n) = (n?). No better than grade school multiplication!
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Time Analysis

Xy = (1On:2XL + XR)(lon:ZyL + YRr)

= 10"x Y. + 10" (X YR + XRYL) + XRYR

4 recursive multiplications of number of size n=2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T(n) =4T (n=2) + O(n) TA) =001
T(n) = (n?). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Chandra Chekuri (UIUC) CS/ECE 374 9 Fall 2018 9/ 34



Improving the Running Time

Xy = (10n:2XL + XR)(]-OHZZYL + YRr)
= 10"x yL + 10"?(XLYRr + XRYL) + XRrYR

Gauss trick: X Yr + XrYL = (XL + Xg)(YL + YrR) — XLYL — XRrYR
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Improving the Running Time

Xy = (10n:2XL + XR)(]-OHZZYL + YRr)
= 10"x yL + 10"?(XLYRr + XRYL) + XRrYR

Gauss trick: X Yr + XrYL = (XL + Xg)(YL + YrR) — XLYL — XRrYR

Recursively compute only .y, ; XrYr; (XL + Xg) (YL + YRr).
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Improving the Running Time

Xy = (10n:2XL + XR)(lonZZYL + YRr)
= 10"x yL + 10"?(XLYRr + XRYL) + XRrYR

Gauss trick: X Yr + XrYL = (XL + Xg)(YL + YrR) — XLYL — XRrYR

Recursively compute only .y, ; XrYr; (XL + Xg) (YL + YRr).

Time Analysis
Running time is given by

T(n) = 3T (n=2) + O(n) T(@1) =0()

which means
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Improving the Running Time

Xy = (10n:2XL + XR)(lonZZYL + YRr)
= 10"x yL + 10"?(XLYRr + XRYL) + XRrYR

Gauss trick: X Yr + XrYL = (XL + Xg)(YL + YrR) — XLYL — XRrYR

Recursively compute only .y, ; XrYr; (XL + Xg) (YL + YRr).

Time Analysis
Running time is given by

T(n) = 3T (n=2) + O(n) T(@1) =0()

which means T (n) = O(n'%:3) = O(n*5%)
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State of the Art

Schonhage-Strassen 1971: O(nlog nloglogn) time using
Fast-Fourier-Transform (FF'T)

Martin Furer 2007: O (n log n2°0°9" MY time

There is an O(nlog n) time algorithm.
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Analyzing the Recurrences

@ Basic divide and conquer: T (n) = 4T (n=2) + O(n),
T(1) =1. Claim: T(n) = (n?).

@ Saving a multiplication: T (n) = 3T (n=2) + O(n),
T(1) = 1. Claim: T(n) = (n%*91:%)
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Analyzing the Recurrences

@ Basic divide and conquer: T (n) = 4T (n=2) + O(n),
T(1) =1. Claim: T(n) = (n?).

@ Saving a multiplication: T (n) = 3T (n=2) + O(n),
T(1) = 1. Claim: T(n) = (n*logls)

Use recursion tree method:

© In both cases, depth of recursion L = log n.

@ Work at depth i is 4'n=2" and 3'n=2' respectively: number of
children at depth i times the work at each child

@ Total work is therefore n >-_, 2 and n "1 (3=2)'
respectively.
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Recursion tree analysis
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Part 1l

Selecting in Unsorted Lists
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Rank of element in an array

A: an unsorted array of n integers

For 1 < j < n, element of rank j is the j’th smallest element in A. \

Unsorted array | 16 (14| 34120 12| 5 3 [19] 11

Ranks 6151984 2]1]7]3

Sortofarray | 3 | 5 | 11|12 |14 (16 |19 |20 |34
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Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = | (n + 1)=2]
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Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = | (n + 1)=2]

Simplifying assumption for sake of notation: elements of A are
distinct
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Algorithm |

@ Sort the elements in A
@ Pick jth element in sorted order

Time taken = O(nlog n)

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2018 17 /7 34



Algorithm |

@ Sort the elements in A
@ Pick jth element in sorted order

Time taken = O(nlog n)

Do we need to sort? Is there an O(n) time algorithm?
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Algorithm I

If j is small or n — j is small then
© Find j smallest/largest elements in A in O(jn) time. (How?)
@ Time to nd median is O(n?).
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Divide and Conquer Approach

@ Pick a pivot element a from A
@ Partition A based on a.
Aless = {X € A | x < a} and Agreater = {X € A | X > a}
Q |Alss| =j: return a
@ |Ajess| = j: recursively nd jth smallest element in Ajess

@ |Asess| < j: recursively nd kth smallest element in Agreater
where K = j — |Ajess|-
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16 (14| 34120112 5 [ 3 19|11
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Time Analysis

@ Partitioning step: O(n) time to scan A
@ How do we choose pivot? Recursive running time?
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Time Analysis

@ Partitioning step: O(n) time to scan A
@ How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].
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Time Analysis

@ Partitioning step: O(n) time to scan A
@ How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes (n?) time
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A Better Pivot

Suppose pivot is the “th smallest element where n=4 < “ < 3n=4.
That is pivot is approximately in the middle of A

Then n=4 < |Aiss| < 3n=4 and n=4 < |Agreater] < 3n=4. If we
apply recursion,
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A Better Pivot

Suppose pivot is the “th smallest element where n=4 < “ < 3n=4.
That is pivot is approximately in the middle of A
Then n=4 < |Aiss| < 3n=4 and n=4 < |Agreater] < 3n=4. If we
apply recursion,

T(n) <T@Bn=4)+0(n)

Implies T (n) = O(n)!
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A Better Pivot

Suppose pivot is the “th smallest element where n=4 < “ < 3n=4.
That is pivot is approximately in the middle of A
Then n=4 < |Aiss| < 3n=4 and n=4 < |Agreater] < 3n=4. If we
apply recursion,

T(n) <T@Bn=4)+0(n)

Implies T (n) = O(n)!

How do we nd such a pivot?
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A Better Pivot

Suppose pivot is the “th smallest element where n=4 < “ < 3n=4.
That is pivot is approximately in the middle of A
Then n=4 < |Aiss| < 3n=4 and n=4 < |Agreater] < 3n=4. If we
apply recursion,

T(n) <T@Bn=4)+0(n)

Implies T (n) = O(n)!

How do we nd such a pivot? Randomly?
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A Better Pivot

Suppose pivot is the “th smallest element where n=4 < “ < 3n=4.
That is pivot is approximately in the middle of A
Then n=4 < |Aiss| < 3n=4 and n=4 < |Agreater] < 3n=4. If we
apply recursion,

T(n) <T@Bn=4)+0(n)

Implies T (n) = O(n)!

How do we nd such a pivot? Randomly? In fact works!
Analysis a little bit later.
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A Better Pivot

Suppose pivot is the “th smallest element where n=4 < “ < 3n=4.
That is pivot is approximately in the middle of A
Then n=4 < |Aiss| < 3n=4 and n=4 < |Agreater] < 3n=4. If we
apply recursion,

T(n) <T@Bn=4)+0(n)

Implies T (n) = O(n)!

How do we nd such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?
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Divide and Conquer Approach

A game of medians

© Break input A into many subarrays: Lq;::: Lg.
@ Find median m; in each subarray L;.

@ Intuition: The median x should be close to being a good median
of all the numbers in A.

© Use x as pivot in previous algorithm.
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Example

1117 [3 |42|174(310| 1 |92 |87 | 12| 19] 15
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1117 [3 |42|174(310| 1 |92 |87 | 12| 19] 15
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Choosing the pivot
A clash of medians

@ Partition array A into [n=5] lists of 5 items each.
Li = {A[5i +1];:::;A[GI — 4]}, :::,
Lin=s1 = {A[5[n=5] — 4;:::; A[n]}.

@ For each i nd median b; of L; using brute-force in O (1) time.
Total O(n) time

@ Find median b of B
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Choosing the pivot
A clash of medians

@ Partition array A into [n 5] lists of 5 items each.
L. = {A[LL AL2]; 1 ALY Lo = {A[6] """ 13 A[101},
Li = {A[5| +1];:::; A5 — 41}, :
Lr=s1 = {A[5[n= 51— 4;:::; AT}
@ For each i nd median b; of LI using brute-force in O (1) time.
Total O(n) time

@ Find median b of B

Median of B is an approximate median of A. That is, if b is used a
pivot to partition A, then |Aiss| < 7n=10 + 6 and
|Agreater| S 7n=10 + 6.
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Algorithm for Selection

A storm of medians

select(A, j):

Partition A into Ajess and Agreater Using b as pivot
if (JAless|]) =] return b
else if (|Aless|) =>j)
return select(Ajess, j)
else
return select(Agreaters J — |Aless|)
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Algorithm for Selection

A storm of medians

select(A, j):

Partition A into Ajess and Agreater USing b as pivot
if (JAjess|) =] return b
else if (lAIessl) >J)
return select(Ajess, j)
else
return select(Agreaters j — |Aless|)

How do we nd median of B?
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Algorithm for Selection

A storm of medians

select(A, j):

Partition A into Ajess and Agreater USing b as pivot
if (JAjess|) =] return b
else if (lAIessl) >J)
return select(Ajess, j)
else
return select(Agreaters j — |Aless|)

How do we nd median of B? Recursively!
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Algorithm for Selection

A storm of medians

select(A, j):

b = select(B, [n=10])
Partition A Into Ajess and Agreater Using b as pivot
if (JAless|]) =] return b
else if (|Aless|) =>j)
return select(Ajess, j)
else
return select(Agreaters j — |Aless|)
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Running time of deterministic median selection

A dance with recurrences

T(n) < T([n=5]) + max{T (|Aess):; T (|Agreater) |} + O(N)
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Running time of deterministic median selection

A dance with recurrences

T(n) < T([n=5]) + max{T (|Aess):; T (|Agreater) |} + O(N)

From Lemma,

T(n) < T([n=5]) + T([7n=10 +6]) + O(n)

and
T() =0(0Q) n <10
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Running time of deterministic median selection

A dance with recurrences

T(n) < T([n=5]) + max{T (|Aess):; T (|Agreater) |} + O(N)

From Lemma,

T(n) < T([n=5]) + T([7n=10 +6]) + O(n)
and
T() =0(0Q) n <10

Exercise: show that T (n) = O(n)
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Median of Medians: Proof of Lemma

Proposition

There are at least 3n=10 — 6 elements smaller than the median of

medians b.
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Median of Medians: Proof of Lemma

Proposition

There are at least 3n=10 — 6 elements smaller than the median of
medians b.

At least half of the |n=5] groups have at least 3 elements smaller
than b, except for the group containing b which has 2 elements
smaller than b. Hence number of elements smaller than b is:

|In=5] +1

3| | —1>3n=10—6 0
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Median of Medians: Proof of Lemma

Proposition

There are at least 3n=10 — 6 elements smaller than the median of
medians b.

|Agreater| < 7n=10 + 6. l

Via symmetric argument,

|A|ess| S 7n:10 -+ 6. l
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Questions to ponder

@ Why did we choose lists of size 5? Will lists of size 3 work?

@ Write a recurrence to analyze the algorithm’s running time if we
choose a list of size k.
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Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
\Time bounds for selection™.

Journal of Computer System Sciences (JCSS), 1973.
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Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

\Time bounds for selection™.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
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Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

\Time bounds for selection™.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!
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Takeaway Points

@ Recursion tree method and guess and verify are the most reliable
methods to analyze recursions in algorithms.

@ Recursive algorithms naturally lead to recurrences.

© Some times one can look for certain type of recursive algorithms
(reverse engineering) by understanding recurrences and their
behavior.
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