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Regular Languages, DFAs, NFAs

Languages accepted by DFAs, NFAs, and regular expressions are the
same.

Question: Is every language a regular language?
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@ Each DFA M can be represented as a string over a finite
alphabet X by appropriate encoding. Or think of regular
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Regular Languages, DFAs, NFAs

Languages accepted by DFAs, NFAs, and regular expressions are the
same.

Question: Is every language a regular language? No.

@ Each DFA M can be represented as a string over a finite
alphabet X by appropriate encoding. Or think of regular
expressions which are easy to view as strings.

@ Hence number of regular languages is countably infinite
@ Number of languages is uncountably infinite

@ Hence there must be a non-regular language!
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A Simple and Canonical Non-regular Language

K
L = {01k | #> 0} = {e, 01,0011, 000111, --- ,}

f‘t O\‘,*
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A Simple and Canonical Non-regular Language

L = {01 | i > 0} = {e, 01,0011, 000111, --- ,}

L is not regular. \

Question: Proof?

Intution: Any program to recognize L seems to require counting
number of zeros in input which cannot be done with fixed memory.
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A Simple and Canonical Non-regular Language

L = {01 | i > 0} = {e, 01,0011, 000111, --- ,}

L is not regular. \

Question: Proof?

Intution: Any program to recognize L seems to require counting
number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
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Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that
L(M) = L.
o Let M = (Q,{0,1},46,s, A) where |Q| = n.
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Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that
L(M) = L.

o Let M = (Q,{0,1},46,s, A) where |Q| = n.
Consider strings €, 0,00, 000, - - - , 0" total of n 4+ 1 strings.

What is the behavior of M on these strings? Let g; = 6*(s, 0).
By pigeon hole principle g; = qj for some 0 < i < j < n.

That is, M is in the same state after reading 0° and OV- where

i #J
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Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that
L(M) = L.
o Let M = (Q,{0,1},46,s, A) where |Q| = n.

Consider strings €,0,00, 000, - - - , 0" total of n 4+ 1 strings.
What is the behavior of M on these strings? Let g; = 6*(s, 0).

By pigeon hole principle g; = qj for some 0 < i < j < n.
That is, M is in the same state after reading 0° and OV- where

i #J

M should accept 0717 but then it will also accept 0/17 where i # j.
This contradicts the fact that M accepts L. Thus, there is no DFA
for L.
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Generalizing the argument

Definition

For a language L over X and two strings x, y € X* we say that x
and y are distinguishable with respect to L if there is a string

w € X* such that exactly one of xw, yw is in L. In other words
either xpe L, ywu L or xwZ L, yuc L.
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Generalizing the argument

Definition
For a language L over X and two strings x, y € X* we say that x
and y are distinguishable with respect to L if there is a string

w € X* such that exactly one of xw, yw is in L. In other words
eitherx e L,y g Lorx & L,y € L.

X, y are indistinguishable with respect to L if there is no such w.

Example: If i # j, 0' and OV are distinguishable with respect to
L = {0*1¥ | kK > 0} ot',t‘ el ofi ¢L

Example: 000 and 0000 are indistinguishable with respect to the
language L = {w | w has 00 as a substring}
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Wee Lemma

Suppose L = L(M) for some DFA M = (Q, X, é, s, A) and
suppose x, y are distinguishable with respect to L. Then

0%(s, x) # 0*(s, y).
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Wee Lemma

Suppose L = L(M) for some DFA M = (Q, X, é, s, A) and
suppose x, y are distinguishable with respect to L. Then

6*(s, x) # 6*(s, y).

Since x, y are distinguishable let w be the distinguishing suffix. If
0*(s,x) = 6*(s, y) then M will either accept both the strings

xw, yw, or reject both. But exactly one of them isin L, a
contradiction. O
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Fooling Sets

Definition

For a language L over X a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every pair of distinct strings
X,y € F are distinguishable.
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Fooling Sets

Definition

For a language L over X a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every pair of distinct strings
X,y € F are distinguishable.

Example: F = {0’ | i > 0} is a fooling set for the language
L = {0k1¥ | kK > 0}.

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.
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Proof of Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.

Proof.

Suppose there is a DFA M = (Q, X, J, s, A) that accepts L. Let
Q| = n.
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Proof of Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.

Proof.

Suppose there is a DFA M = (Q, X, J, s, A) that accepts L. Let
|Q| = n.

If n < |F| then by pigeon hole principle there are two strings
x,y € F, x # y such that §*(s, x) = 6*(s, y) but x, y are
distinguishable.
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Proof of Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.

Proof.

Suppose there is a DFA M = (Q, X, J, s, A) that accepts L. Let
Q| =n.

If n < |F| then by pigeon hole principle there are two strings

x,y € F, x # y such that §*(s, x) = 6*(s, y) but x, y are
distinguishable.

Implies that there is w such that exaclty one of xw, yw is in L.
However, M's behaviour on xw and yw is exacly the same and hence
M will accept both xw, yw or reject both. A contradiction. O]

4
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Infinite Fooling Sets

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.

If L has an infinite fooling set F then L is not regular. \
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Infinite Fooling Sets

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.

If L has an infinite fooling set F then L is not regular. \

Proof.
Suppose for contradiction that L = L(M) for some DFA M with n

states.

Any subset F’ of F is a fooling set. (Why?) Pick F” C F arbitrarily
such that |F’| > n. By preceding theorem, we obtain a
contradiction. O
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o {01 | k > 0} F:éo‘: {,i?,o}
0 ) 7

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018



o {0k1% | kK > 0}
o {bitstrings with equal number of Os and 1s}

- \S_ £, 0(,10, 00ll ,lool, 10O, DIOuly,

ollo, - - }

Fe -EDI: {i'),b}
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L

o {0k1% | kK > 0}
o {bitstrings with equal number of Os and 1s}

° {0k1e|k;é£} LL.
- *
LL; L| n 0*,
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o {0k1% | kK > 0}
o {bitstrings with equal number of Os and 1s}
o {0%1¢ | k # £} g
2
o {0 | k>0} - 25& £, 0,0000, 0600, ._.]

F: iol./(?’JS 3 QM‘7L/—

) Dr-.




Exponential gap between NFA and DFA size

= {w € {0,1}* | w has a 1 k positions from the end}

ﬁpu)’rl (o ﬂ)k"
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Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.
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Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Every DFA that accepts L, has at least 2% states. \

F ={w € {0,1}* : |w| = k} is a fooling set of size 2% for Ly.
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Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Every DFA that accepts L, has at least 2% states. l

F ={w € {0,1}* : |w| = k} is a fooling set of size 2% for Ly.

Why?
@ Suppose aiaz...ax and byb, ... b, are two distinct bitstrings
of length k
@ Let i be first index where a; # b;
oy = is a distinguishing suffix for the two strings
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How do pick a fooling set

How do we pick a fooling set F7

e If x,y are in F and x # y they should be distinguishable! Of
course.
@ All strings in F except maybe one should be prefixes of strings in

the language L.
For example if L = {0%1k | k > 0} do not pick 1 and 10

(say). Why?
k |<. Ik 7103

o
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Part |

Non-regularity via closure properties
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Non-regularity via closure properties

L = {bitstrings with equal number of Os and 1s}
L' = {0%1k | kK > 0}

Suppose we have already shown that L’ is non-regular. Can we show
that L is non-regular without using the fooling set argument from

scratch?

L= Cn of1*
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that L is non-regular without using the fooling set argument from
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Non-regularity via closure properties

L = {bitstrings with equal number of Os and 1s}
L' = {0%1k | kK > 0}

Suppose we have already shown that L’ is non-regular. Can we show
that L is non-regular without using the fooling set argument from
scratch?

L' = LN L(0*1%)
Claim: The above and the fact that L’ is non-regular implies L is
non-regular. Why?

Suppose L is regular. Then since L(0*1*) is regular, and regular
languages are closed under intersection, L” also would be regular. But
we know L’ is not regular, a contradiction.
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Non-regularity via closure properties

General recipe:

Y
KNOWN Apply
REGULAR closure Lnon—regular
properties
/

UNKNOWN L?
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Proving non-regularity: Summary

@ DFAs have fixed memory. Any language that requires memory
that grows with input size is not regular. Not always easy to tell!

@ Method of distinguishing suffixes. To prove that L is non-regular
find an infinite fooling set.

@ Closure properties. Use existing non-regular languages and
regular languages to prove that some new language is
non-regular.

@ Pumping lemma. We did not cover it but it is sometimes an
easier proof technique to apply, but not as general as the fooling
set technique.
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Myhill-Nerode Theorem
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Indistinguishability

Recall:

Definition

For a language L over X and two strings x, y € £* we say that x
and y are distinguishable with respect to L if there is a string

w € X* such that exactly one of xw, yw isin L. x,y are
indistinguishable with respect to L if there is no such w.

Given language L over X define a relation =, over strings in * as
follows: x =, y iff x and y are indistinguishable with respect to L.
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Indistinguishability

Recall:

Definition

For a language L over X and two strings x, y € £* we say that x
and y are distinguishable with respect to L if there is a string

w € X* such that exactly one of xw, yw isin L. x,y are
indistinguishable with respect to L if there is no such w.

Given language L over X define a relation =, over strings in * as
follows: x =, y iff x and y are indistinguishable with respect to L.

=, is an equivalence relation over X*. \

Therefore, =, partitions X* into a collection of equivalence classes
D ST, CYR
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=, is an equivalence relation over X*.

Therefore, =, partitions X* into a collection of equivalence classes.

Let x, y be two distinct strings. If x,y belong to the same

equivalence class of =, then x, y are indistinguishable. Otherwise
they are distinguishable.

If = is finite with n equivalence classes then there is a fooling set F

of size n for L. If =, is infinite then there is an infinite fooling set for
L.
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Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is is regular if and only if =, has a finite number of equivalence
classes. If =, is finite with n equivalence classes then there is a DFA
M accepting L with exactly n states and this is the minimum
possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling
set F for L.

Algorithmic implication: For every DFA M one can find in
polynomial time a DFA M’ such that L(M) = L(M’) and M’ has
the fewest possible states among all such DFAs.
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