For each of the following languages over the alphabet $\Sigma=\{0,1\}$, either prove the language is regular (by giving an equivalent regular expression, DFA, or NFA) or prove that the language is not regular (using a fooling set argument). Exactly half of these languages are regular.

1. $\left\{0^{n} 10^{n} \mid n \geq 0\right\}$

Solution: Not regular: Any two strings $x=0^{i}$ and $y=0^{j}$ are distinguished by the suffix $z=10^{i}$. Thus, $0^{*}$ is a fooling set.
2. $\left\{0^{n} 10^{n} w \mid n \geq 0\right.$ and $\left.w \in \Sigma^{*}\right\}$

Solution: Not regular. Any two strings $x=0^{i}$ and $y=0^{j}$ where $i<j$ are distinguished by the suffix $z=10^{i}$. (It is crucial that $i<j$ here!) Thus, $0^{*}$ is a fooling set.
3. $\left\{w 0^{n} 10^{n} x \mid w \in \Sigma^{*}\right.$ and $n \geq 0$ and $\left.x \in \Sigma^{*}\right\}$

Solution: Regular. This is the set of all strings containing the symbol 1, which is described by the regular expression $0^{*} 1(0+1)^{*}$.
4. Strings in which the number of 0 s and the number of 1 s differ by at most 2 .

Solution: Not regular. Any two strings $x=0^{i}$ and $y=0^{j}$ where $i<j$ are distinguished by the suffix $z=1^{j+2}$. (It is crucial that $i<j$ here!) Thus, $0^{*}$ is a fooling set.
5. Strings such that in every prefix, the number of 0 s and the number of 1 s differ by at most 2 .

Solution: Regular. Keep track of the difference between the number of 0 s and the number of 1 s seen so far. If this difference is ever less than -2 or greater than 2, reject; otherwise, accept. So we get a six-state DFA, where five of the states are accepting.
6. Strings such that in every substring, the number of 0 s and the number of 1 s differ by at most 2 .

Solution: Regular. Keep track of the current difference between the number of 0 s and the number of 1 s seen so far. Also keep track of the maximum and minimum value of this difference seen so far. If the max-difference is ever more than min-difference+2, reject. Crudely, there are at most 45 possible values of (curr-dif, max-diff, min-diff), so we get a DFA with at most 46 states.

Alternatively, we can non-deterministically guess the range of differences ( $-2 \leq \operatorname{diff} \leq 0$ or $-1 \leq$ diff $\leq 1$ or $0 \leq$ diff $\leq 2$ ), build a separate DFA for each guess, and combine the three DFAs into a single 10 -state NFA.


