Prove that each of the following languages is not regular.

1. $\left\{0^{2^{n}} \mid n \geq 0\right\}$

Solution (verbose): Let $F=L=\left\{0^{2^{n}} \mid n \geq 0\right\}$.
Let x and y be arbitrary elements of F.
Then $x=0^{2^{i}}$ and $y=0^{2^{j}}$ for some non-negative integers x and y.
Let $z=0^{2^{i}}$.
Then $x z=0^{2^{i}} 0^{2^{i}}=0^{2^{i+1}} \in L$.
And $y z=0^{2^{j}} 0^{2^{i}}=0^{2^{i}+2^{j}} \notin L$, because $i \neq j$
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings $0^{2^{i}}$ and $0^{2^{j}}$ are distinguished by the suffix $0^{2^{i}}$, because $0^{2^{i}} 0^{2^{i}}=0^{2^{i+1}} \in L$ but $0^{2^{j}} 0^{2^{i}}=0^{2^{i+j}} \notin L$. Thus L itself is an infinite fooling set for L.
2. $\left\{0^{2 n} 1^{n} \mid n \geq 0\right\}$

Solution (verbose): Let F be the language 0*.
Let x and y be arbitrary strings in F.
Then $x=0^{i}$ and $y=0^{j}$ for some non-negative integers $i \neq j$.
Let $z=0^{i} 1^{i}$.
Then $x z=0^{2 i} 1^{i} \in L$.
And $y z=0^{i+j} 1^{i} \notin L$, because $i+j \neq 2 i$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution (concise): For all non-negative integers $i \neq j$, the strings 0^{i} and 0^{j} are distinguished by the suffix $0^{i} 1^{i}$, because $0^{2 i} 1^{i} \in L$ but $0^{i+j} 1^{i} \notin L$. Thus, the language 0^{*} is an infinite fooling set for L.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $0^{2 i}$ and $0^{2 j}$ are distinguished by the suffix 1^{i}, because $0^{2 i} 1^{i} \in L$ but $0^{2 j} 1^{i} \notin L$. Thus, the language (00)* is an infinite fooling set for L.
3. $\left\{0^{m} 1^{n} \mid m \neq 2 n\right\}$

Solution (verbose): Let F be the language 0^{*}.
Let x and y be arbitrary strings in F.
Then $x=0^{i}$ and $y=0^{j}$ for some non-negative integers $i \neq j$.
Let $z=0^{i} 1^{i}$.
Then $x z=0^{2 i} 1^{i} \notin L$.
And $y z=0^{i+j} 1^{i} \in L$, because $i+j \neq 2 i$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $0^{2 i}$ and $0^{2 j}$ are distinguished by the suffix 1^{i}, because $0^{2 i} 1^{i} \notin L$ but $0^{2 j} 1^{i} \in L$. Thus, the language (00)* is an infinite fooling set for L.
4. Strings over $\{0,1\}$ where the number of 0 s is exactly twice the number of 1 s .

Solution (verbose): Let F be the language 0*.
Let x and y be arbitrary strings in F.
Then $x=0^{i}$ and $y=0^{j}$ for some non-negative integers $i \neq j$.
Let $z=0^{i} 1^{i}$.
Then $x z=0{ }^{2 i} 1^{i} \in L$.
And $y z=0^{i+j} 1^{i} \notin L$, because $i+j \neq 2 i$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $0^{2 i}$ and $0^{2 j}$ are distinguished by the suffix 1^{i}, because $0^{2 i} 1^{i} \in L$ but $0^{2 j} 1^{i} \notin L$. Thus, the language (00)* is an infinite fooling set for L.

Solution (closure properties): If L were regular, then the language

$$
\left((0+1)^{*} \backslash L\right) \cap 0^{*} 1^{*}=\left\{0^{m} 1^{n} \mid m \neq 2 n\right\}
$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\left\{0^{m} 1^{n} \mid m \neq 2 n\right\}$ is not regular in problem 3. [Yes, this proof would be worth full credit, either in homework or on an exam.]
5. Strings of properly nested parentheses (), brackets [], and braces \{\}. For example, the string ([]) \{\} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

Solution (verbose): Let F be the language (*.
Let x and y be arbitrary strings in F.
Then $x=\left({ }^{i}\right.$ and $y=\left({ }^{j}\right.$ for some non-negative integers $i \neq j$.
Let $z=)^{i}$.
Then $x z=\left({ }^{i}\right)^{i} \in L$.
And $y z=\left({ }^{j}\right)^{i} \notin L$, because $i \neq j$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings (${ }^{i}$ and (${ }^{j}$ are distinguished by the suffix $)^{i}$, because ($\left.{ }^{i}\right)^{i} \in L$ but $\left({ }^{i}\right)^{j} \notin L$. Thus, the language (${ }^{*}$ is an infinite fooling set.
6. Strings of the form $w_{1} \# w_{2} \# \cdots \# w_{n}$ for some $n \geq 2$, where each substring w_{i} is a string in $\{0,1\}^{*}$, and some pair of substrings w_{i} and w_{j} are equal.

Solution (verbose): Let F be the language 0*.
Let x and y be arbitrary strings in F.
Then $x=0^{i}$ and $y=0^{j}$ for some non-negative integers $i \neq j$.
Let $z=\# 0^{i}$.
Then $x z=0^{i} \# 0^{i} \in L$.
And $y z=0^{j} \# 0^{i} \notin L$, because $i \neq j$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings 0^{i} and 0^{j} are distinguished by the suffix $\# 0^{i}$, because $0^{i} \# 0^{i} \in L$ but $0^{j} \# 0^{i} \notin L$. Thus, the language 0^{*} is an infinite fooling set.

Work on these later:

7. $\left\{0^{n^{2}} \mid n \geq 0\right\}$

Solution: Let x and y be distinct arbitrary strings in L.
Without loss of generality, $x=0^{i^{2}}$ and $y=0^{j^{2}}$ for some $i>j \geq 0$.
Let $z=0^{2 j+1}$.
Then $y z=0^{j^{2}+2 j+1}=0^{(j+1)^{2}} \in L$
On the other hand, $x z=0^{i^{2}+2 j+1} \notin L$, because $i^{2}<i^{2}+2 j+1<i^{2}+2 i+1=(i+1)^{2}$.
Thus, z distinguishes x and y.
We conclude that L is an infinite fooling set for L, so L cannot be regular.

Solution: Let x and y be distinct arbitrary strings in 0^{*}.
Without loss of generality, $x=0^{i}$ and $y=0^{j}$ for some $i>j \geq 0$.
Let $z=0^{i^{2}+i+1}$.
Then $x z=0^{i^{2}+2 i+1}=0^{(i+1)^{2}} \in L$.
On the other hand, $y z=0^{i^{2}+i+j+1} \notin L$, because $i^{2}<i^{2}+i+j+1<i^{2}+2 i+1=(i+1)^{2}$.
Thus, z distinguishes x and y.
We conclude that 0^{*} is an infinite fooling set for L, so L cannot be regular.

Solution: Let x and y be distinct arbitrary strings in 00^{*}.
Without loss of generality, $x=0^{i}$ and $y=0^{j}$ for some $i>j \geq 1$.
Let $z=0^{i^{2}-i}$.
Then $x z=0^{i^{2}} \in L$.
On the other hand, $y z=0^{i^{2}-i+j} \notin L$, because

$$
(i-1)^{2}=i^{2}-2 i+1<i^{2}-i<i^{2}-i+j<i^{2}
$$

(The first inequalities requires $i \geq 2$, and the second $j \geq 1$.)
Thus, z distinguishes x and y.
We conclude that 00^{*} is an infinite fooling set for L, so L cannot be regular.
8. $\left\{w \in(0+1)^{*} \mid w\right.$ is the binary representation of a perfect square $\}$

Solution: We design our fooling set around numbers of the form $\left(2^{k}+1\right)^{2}=2^{2 k}+2^{k+1}+1=$ $10^{k-2} 10^{k} 1 \in L$, for any integer $k \geq 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F=1(00)^{*} 1$, and let x and y be arbitrary strings in F.
Then $x=10^{2 i-2} 1$ and $y=10^{2 j-2} 1$, for some positive integers $i \neq j$.
Without loss of generality, assume $i<j$. (Otherwise, swap x and y.)
Let $z=0^{2 i} 1$.
Then $x z=10^{2 i-2} 10^{2 i} 1$ is the binary representation of $2^{4 i}+2^{2 i+1}+1=\left(2^{2 i}+1\right)^{2}$, and therefore $x z \in L$.

On the other hand, $y z=10^{2 j-2} 10^{2 i} 1$ is the binary representation of $2^{2 i+2 j}+2^{2 i+1}+1$. Simple algebra gives us the inequalities

$$
\begin{aligned}
\left(2^{i+j}\right)^{2} & =2^{2 i+2 j} \\
& <2^{2 i+2 j}+2^{2 i+1}+\mathbf{1} \\
& <2^{2(i+j)}+2^{i+j+1}+1 \\
& =\left(2^{i+j}+1\right)^{2} .
\end{aligned}
$$

So $2^{2 i+2 j}+2^{2 i+1}+1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $y z \notin L$.

We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.

