Breadth First Search, Dijkstra's Algorithm for Shortest Paths

Overview

(A) BFS is obtained from BasicSearch by processing edges using a queue data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

As such...

- DFS good for exploring graph structure
- BFS good for exploring distances

Queue Data Structure

Queues

A queue is a list of elements which supports the operations:

- **enqueue**: Adds an element to the end of the list
- **dequeue**: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.
Algorithm

Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

$BFS(s)$
- Mark all vertices as unvisited
- Initialize search tree T to be empty
- Mark vertex s as visited
- set Q to be the empty queue
- $enqueue(Q, s)$
- while Q is nonempty do
 - $u = dequeue(Q)$
 - for each vertex $v \in Adj(u)$
 - if v is not visited then
 - add edge (u, v) to T
 - Mark v as visited and $enqueue(v)$

Proposition

$BFS(s)$ runs in $O(n + m)$ time.

: An Example in Undirected Graphs

: An Example in Directed Graphs

with Distance

$BFS(s)$
- Mark all vertices as unvisited; for each v set $dist(v) = \infty$
- Initialize search tree T to be empty
- Mark vertex s as visited and set $dist(s) = 0$
- set Q to be the empty queue
- $enqueue(s)$
- while Q is nonempty do
 - $u = dequeue(Q)$
 - for each vertex $v \in Adj(u)$ do
 - if v is not visited do
 - add edge (u, v) to T
 - Mark v as visited, $enqueue(v)$
 - and set $dist(v) = dist(u) + 1$
Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of \textbf{BFS}(s):

(A) The search tree contains exactly the set of vertices in the connected component of s.

(B) If \(\text{dist}(u) < \text{dist}(v)\) then u is visited before v.

(C) For every vertex u, \(\text{dist}(u)\) is the length of a shortest path (in terms of number of edges) from s to u.

(D) If u, v are in connected component of s and e = \{u, v\} is an edge of G, then |\(\text{dist}(u) - \text{dist}(v)\)| \(\leq 1\).

Properties of BFS: Directed Graphs

Theorem

The following properties hold upon termination of \textbf{BFS}(s):

(A) The search tree contains exactly the set of vertices reachable from s

(B) If \(\text{dist}(u) < \text{dist}(v)\) then u is visited before v.

(C) For every vertex u, \(\text{dist}(u)\) is indeed the length of shortest path from s to u.

(D) If u is reachable from s and e = (u, v) is an edge of G, then \(\text{dist}(v) - \text{dist}(u) \leq 1\).

Not necessarily the case that \(\text{dist}(u) - \text{dist}(v) \leq 1\).

with Layers

\textbf{BFSLayers}(s):
Mark all vertices as unvisited and initialize \(T\) to be empty
Mark s as visited and set \(L_0 = \{s\}\)
\(i = 0\)

while \(L_i\) is not empty do
 initialize \(L_{i+1}\) to be an empty list
 for each u in \(L_i\) do
 for each edge \((u, v) \in \text{Adj}(u)\) do
 if v is not visited
 mark v as visited
 add \((u, v)\) to tree \(T\)
 add v to \(L_{i+1}\)
 \(i = i + 1\)

Running time: \(O(n + m)\)

Example
with Layers: Properties

Proposition

The following properties hold on termination of \(\text{BFSLayers}(s) \).

1. \(\text{BFSLayers}(s) \) outputs a BFS tree
2. \(L_i \) is the set of vertices at distance exactly \(i \) from \(s \)
3. If \(G \) is undirected, each edge \(e = \{u, v\} \) is one of three types:
 - tree edge between two consecutive layers
 - non-tree forward/backward edge between two consecutive layers
 - non-tree cross-edge with both \(u, v \) in same layer
 - Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.

Example

Part II

Shortest Paths and Dijkstra’s Algorithm
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths via **BFS**

- **Special case:** All edge lengths are 1.
 - Run BFS(s) to get shortest path distances from s to all other nodes.
 - $O(m + n)$ time algorithm.
- **Special case:** Suppose $\ell(e)$ is an integer for all e?
 - Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.
- Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. BFS takes $O(mL + n)$ time. Not efficient if L is large.

Towards an algorithm

Why does BFS work? BFS(s) explores nodes in increasing distance from s

Lemma

Let G be a directed graph with non-negative edge lengths. Let $\text{dist}(s, v')$ denote the shortest path length from s to v'. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is shortest path from s to v_i
- $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$. **Relies on non-neg edge lengths.**

Proof.

Suppose not. Then for some $i < k$ there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter path to v_k than $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k$. For the second part observe that edge lengths are non-negative.
A proof by picture

\[s = v_0 \]

\[v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_0 \]

Finding the \textit{i}th closest node repeatedly

\begin{itemize}
 \item \textbf{Claim}

 \textit{Let} \(P \) \textit{be a shortest path from} \(s \) \textit{to} \(v \) \textit{where} \(v \) \textit{is the} \textit{i}th \textit{closest node}. \textit{Then, all intermediate nodes in} \(P \) \textit{belong to} \(X \).

 \item \textbf{Proof.}

 If \(P \) \textit{had an intermediate node} \(u \) \textit{not in} \(X \) \textit{then} \(u \) \textit{will be closer to} \(s \) \textit{than} \(v \). \textit{Implies} \(v \) \textit{is not the} \textit{i}'th \textit{closest node to} \(s \) - \textit{recall that} \(X \) \textit{already has the} \textit{i} - 1 \textit{closest nodes.}
\end{itemize}
Finding the ith closest node

Corollary

The ith closest node is adjacent to X.

Lemma

Given:
1. X: Set of $i - 1$ closest nodes to s.
2. $d'(s, u) = \min_{t \in X}(\text{dist}(s, t) + \ell(t, u))$

If v is an ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Proof.

Let v be the ith closest node to s. Then there is a shortest path P from s to v that contains only nodes in X as intermediate nodes (see previous claim). Therefore $d'(s, v) = \text{dist}(s, v)$.

Finding the ith closest node

Lemma

If v is an ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Corollary

The ith closest node to s is the node $v \in V - X$ such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$.

Proof.

For every node $u \in V - X$, $\text{dist}(s, u) \leq d'(s, u)$ and for the ith closest node v, $\text{dist}(s, v) = d'(s, v)$. Moreover, $\text{dist}(s, u) \geq \text{dist}(s, v)$ for each $u \in V - X$.

Finding the ith closest node

X contains the $i - 1$ closest nodes to s.

Want to find the ith closest node from $V - X$.

For each $u \in V - X$ let $P(s, u, X)$ be a shortest path from s to u using only nodes in X as intermediate vertices.

Let $d'(s, u)$ be the length of $P(s, u, X)$

Observations: for each $u \in V - X$,
1. $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths
2. $d'(s, u) = \min_{t \in X}(\text{dist}(s, t) + \ell(t, u))$ - Why?

Lemma

If v is the ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Proof.

Let v be the ith closest node to s. Then there is a shortest path P from s to v that contains only nodes in X as intermediate nodes (see previous claim). Therefore $d'(s, v) = \text{dist}(s, v)$.

Finding the ith closest node

If v is the ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.
Algorithm

Initialize for each node v: $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i-1$ closest nodes to s *)
(* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*)
Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$
$\text{dist}(s, v) = d'(s, v)$
$X = X \cup \{v\}$

for each node u in $V - X$ do

$d'(s, u) = \min_{v \in X} (\text{dist}(s, t) + \ell(t, u))$

Correctness: By induction on i using previous lemmas.

Running time: $O(n \cdot (n + m))$ time.

- n outer iterations. In each iteration, $d'(s, u)$ for each u by scanning all edges out of nodes in X; $O(m + n)$ time/iteration.

Improved Algorithm

- Main work is to compute the $d'(s, u)$ values in each iteration
- $d'(s, u)$ changes from iteration i to $i+1$ only because of the node v that is added to X in iteration i.

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$
Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

// X contains the $i-1$ closest nodes to s,
// and the values of $d'(s, u)$ are current
Let v be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$
$\text{dist}(s, v) = d'(s, v)$
$X = X \cup \{v\}$
Update $d'(s, u)$ for each u in $V - X$ as follows:

$d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u)\right)$

Running time: $O(m + n^2)$ time.

- n outer iterations and in each iteration following steps
- updating $d'(s, u)$ after v is added takes $O(\deg(v))$ time so total running time $O(m + n^2)$ time.

Finding v from $d'(s, u)$ values is $O(n)$ time.

Example: Dijkstra algorithm in action

Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
- update dist values after adding v by scanning edges out of v

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$

for $i = 1$ to $|V|$ do

Let v be such that $\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)$
$X = X \cup \{v\}$

for each u in $\text{Adj}(v)$ do

$\text{dist}(s, u) = \min\left(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)\right)$

Priority Queues to maintain dist values for faster running time

- Using heaps and standard priority queues: $O((m + n) \log n)$
- Using Fibonacci heaps: $O(m + n \log n)$.
Priority Queues

Data structure to store a set \(S \) of \(n \) elements where each element \(v \in S \) has an associated real/integer key \(k(v) \) such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in \(S \).
- **extractMin**: Remove \(v \in S \) with smallest key and return it.
- **insert**: Add new element \(v \) with key \(k(v) \) to \(S \).
- **delete**: Remove element \(v \) from \(S \).
- **decreaseKey**: decrease key of \(v \) from \(k(v) \) (current key) to \(k'(v) \) (new key). Assumption: \(k'(v) \leq k(v) \).
- **meld**: merge two separate priority queues into one.

All operations can be performed in \(O(\log n) \) time.

decreaseKey is implemented via **delete** and **insert**.

Dijkstra’s Algorithm using Priority Queues

\[
\begin{align*}
Q & \leftarrow \text{makePQ}() \\
\text{insert}(Q, (s, 0)) \\
\text{for each node } u \neq s \text{ do} \\
& \text{insert}(Q, (u, \infty)) \\
X & \leftarrow \emptyset \\
\text{for } i = 1 \text{ to } |V| \text{ do} \\
& (v, \text{dist}(s,v)) = \text{extractMin}(Q) \\
& X = X \cup \{v\} \\
& \text{for each } u \text{ in Adj}(v) \text{ do} \\
& \quad \text{decreaseKey}(Q, (u, \text{min(\text{dist}(s,u), \text{dist}(s,v) + \ell(v,u)))}) \\
\end{align*}
\]

Priority Queue operations:

- \(O(n) \) **insert** operations
- \(O(n) \) **extractMin** operations
- \(O(m) \) **decreaseKey** operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

- All operations can be done in \(O(\log n) \) time

Dijkstra’s algorithm can be implemented in \(O((n + m) \log n) \) time.

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- **extractMin, insert, delete, meld** in \(O(\log n) \) time
- **decreaseKey** in \(O(1) \) amortized time: \(\ell \) **decreaseKey** operations for \(\ell \geq n \) take together \(O(\ell) \) time
- Relaxed Heaps: **decreaseKey** in \(O(1) \) worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in \(O(n \log n + m) \) time. If \(m = \Omega(n \log n) \), running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)
Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from \(s \) to \(V \).

Question: How do we find the paths themselves?

\[
\begin{align*}
Q &= \text{makePQ}() \\
&= \text{insert}(Q, (s, 0)) \\
\text{prev}(s) &\leftarrow \text{null} \\
\text{for each node } u \neq s \text{ do} \\
&= \text{insert}(Q, (u, \infty)) \\
&= \text{prev}(u) \leftarrow \text{null} \\
X &= \emptyset \\
\text{for } i = 1 \text{ to } |V| \text{ do} \\
&= (v, \text{dist}(s, v)) = \text{extractMin}(Q) \\
X &= X \cup \{v\} \\
\text{for each } u \text{ in } \text{Adj}(v) \text{ do} \\
&= \text{if } \text{dist}(s, v) + \ell(v, u) < \text{dist}(s, u) \text{ then} \\
&= \text{decreaseKey}(Q, (u, \text{dist}(s, v) + \ell(v, u))) \\
&= \text{prev}(u) = v
\end{align*}
\]

Lemma

The edge set \((u, \text{prev}(u))\) is the reverse of a shortest path tree rooted at \(s \). For each \(u \), the reverse of the path from \(u \) to \(s \) in the tree is a shortest path from \(s \) to \(u \).

Proof Sketch.

1. The edge set \(\{(u, \text{prev}(u)) \mid u \in V\} \) induces a directed in-tree rooted at \(s \) (Why?)
2. Use induction on \(|X|\) to argue that the tree is a shortest path tree for nodes in \(V \).

Shortest paths to \(s \)

Dijkstra’s algorithm gives shortest paths from \(s \) to all nodes in \(V \). How do we find shortest paths from all of \(V \) to \(s \)?

- In undirected graphs shortest path from \(s \) to \(u \) is a shortest path from \(u \) to \(s \) so there is no need to distinguish.
- In directed graphs, use Dijkstra’s algorithm in \(G^{\text{rev}} \).

Shortest paths between sets of nodes

Suppose we are given \(S \subset V \) and \(T \subset V \). Want to find shortest path from \(S \) to \(T \) defined as:

\[
\text{dist}(S, T) = \min_{s \in S, t \in T} \text{dist}(s, t)
\]

How do we find \(\text{dist}(S, T) \)?
Example Problem

You want to go from your house to a friend’s house. Need to pick up some dessert along the way and hence need to stop at one of the many potential stores along the way. How do you calculate the “shortest” trip if you include this stop?

Given $G = (V, E)$ and edge lengths $\ell(e), e \in E$. Want to go from s to t. A subset $X \subset V$ that corresponds to stores. Want to find $\min_{x \in X} d(s, x) + d(x, t)$.

Basic solution: Compute for each $x \in X$, $d(s, x)$ and $d(x, t)$ and take minimum. $2|X|$ shortest path computations. $O(|X|(m + n \log n))$.

Better solution: Compute shortest path distances from s to every node $v \in V$ with one Dijkstra. Compute from every node $v \in V$ shortest path distance to t with one Dijkstra.