Depth First Search (DFS)

Part I

Depth First Search (DFS)

Today

Two topics:
- Structure of directed graphs
- DFS and its properties
- One application of DFS to obtain fast algorithms

DFS special case of Basic Search.

DFS is useful in understanding graph structure.

DFS used to obtain linear time ($O(m + n)$) algorithms for
- Finding cut-edges and cut-vertices of undirected graphs
- Finding strong connected components of directed graphs
- Linear time algorithm for testing whether a graph is planar

...many other applications as well.
DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

\[
\text{DFS}(G) \quad \text{DFS}(u)
\]

for all \(u \in V(G) \) do

Mark \(u \) as unvisited
Set pred\((u)\) to null

T is set to \(\emptyset \)

while \(\exists \) unvisited \(u \) do

DFS\((u)\)

Output \(T \)

Implementated using a global array \textit{Visited} for all recursive calls. \(T \) is the search tree/forest.

Example

Edges classified into two types: \(uv \in E \) is a

1. tree edge: belongs to \(T \)
2. non-tree edge: does not belong to \(T \)

Properties of tree

Proposition

- \(T \) is a forest
- connected components of \(T \) are same as those of \(G \).
- If \(uv \in E \) is a non-tree edge then, in \(T \), either:
 - \(u \) is an ancestor of \(v \), or
 - \(v \) is an ancestor of \(u \).

Question: Why are there no cross-edges?

Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>[pre, post]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[1,</td>
</tr>
<tr>
<td>1</td>
<td>[1, 16]</td>
</tr>
<tr>
<td>2</td>
<td>[2,]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 15]</td>
</tr>
<tr>
<td>4</td>
<td>[3, 14]</td>
</tr>
<tr>
<td>5</td>
<td>[14, 17]</td>
</tr>
</tbody>
</table>

pre and post numbers

Node u is **active** in time interval $[\text{pre}(u), \text{post}(u)]$

Proposition

For any two nodes u and v, the two intervals $[\text{pre}(u), \text{post}(u)]$ and $[\text{pre}(v), \text{post}(v)]$ are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that $\text{pre}(u) < \text{pre}(v)$. Then v visited after u.
- If $\text{DFS}(v)$ invoked before $\text{DFS}(u)$ finished, $\text{post}(v) < \text{post}(u)$.
- If $\text{DFS}(v)$ invoked after $\text{DFS}(u)$ finished, $\text{pre}(v) > \text{post}(u)$.

pre and post numbers useful in several applications of DFS

in Directed Graphs

$\text{DFS}(G)$

- Mark all nodes u as unvisited
 - T is set to \emptyset
 - $time = 0$
- while there is an unvisited node u do
 - $\text{DFS}(u)$
- Output T

$\text{DFS}(u)$

- Mark u as visited
 - $\text{pre}(u) = ++time$
 - for each edge (u, v) in $\text{Out}(u)$ do
 - if v is not visited
 - add edge (u, v) to T
 - $\text{DFS}(v)$
 - $\text{post}(u) = ++time$

Example

- A
 - B
 - C
 - D
 - E
 - F
 - G
 - H
 - I
 - $[2, 11]$
 - $[1, 16]$
- $[2, 15]$
- $[3, 10]$
- $[6, 7]$
- $[4, 5]$
- $[8, 9]$
- $[12, 15]$
- $[13, 14]$
- $[17, 20]$

DFS Properties

Generalizing ideas from undirected graphs:

- **DFS(G)** takes \(O(m + n) \) time.
- Edges added form a *branching*: a forest of out-trees. Output of **DFS(G)** depends on the order in which vertices are considered.
- If \(u \) is the first vertex considered by **DFS(G)** then **DFS(u)** outputs a directed out-tree \(T \) rooted at \(u \) and a vertex \(v \) is in \(T \) if and only if \(v \in \text{rch}(u) \).
- For any two vertices \(x, y \) the intervals \([\text{pre}(x), \text{post}(x)]\) and \([\text{pre}(y), \text{post}(y)]\) are either disjoint or one is contained in the other.

Note: Not obvious whether **DFS(G)** is useful in directed graphs but it is.

Tree

Edges of \(G \) can be classified with respect to the **DFS** tree \(T \) as:

- **Tree edges** that belong to \(T \)
- A *forward edge* is a non-tree edges \((x, y)\) such that \(\text{pre}(x) < \text{pre}(y) < \text{post}(y) < \text{post}(x) \).
- A *backward edge* is a non-tree edge \((y, x)\) such that \(\text{pre}(x) < \text{pre}(y) < \text{post}(y) < \text{post}(x) \).
- A *cross edge* is a non-tree edges \((x, y)\) such that the intervals \([\text{pre}(x), \text{post}(x)]\) and \([\text{pre}(y), \text{post}(y)]\) are disjoint.

Types of Edges

![Types of Edges Diagram]

Cycles in graphs

Question: Given an *undirected* graph how do we check whether it has a cycle and output one if it has one?

Question: Given an *directed* graph how do we check whether it has a cycle and output one if it has one?
Using DFS... to check for Acyclicity and compute Topological Ordering

Question
Given G, is it a **DAG**? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:
- Compute **DFS(G)**
- If there is a back edge \(e = (v, u)\) then G is not a **DAG**. Output cycle C formed by path from u to v in T plus edge \((v, u)\).
- Otherwise output nodes in decreasing post-visit order. **Note:** no need to sort, **DFS(G)** can output nodes in this order.

Algorithm runs in \(O(n + m)\) time.
Correctness is not so obvious. See next two propositions.

Back edge and Cycles

Proposition
G has a cycle iff there is a back-edge in **DFS(G)**.

Proof.
If: \((u, v)\) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge \((u, v)\).

Only if: Suppose there is a cycle C = \(v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1\). Let \(v_i\) be first node in C visited in **DFS**.
All other nodes in C are descendants of \(v_i\) since they are reachable from \(v_i\).
Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.

Proof
Proposition
If G is a **DAG** and \(\text{post}(v) > \text{post}(u)\), then \((u, v)\) is not in G.

Proof.
Assume \(\text{post}(v) > \text{post}(u)\) and \((u, v)\) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.
- Case 1: \([\text{pre}(u), \text{post}(u)]\) is contained in \([\text{pre}(v), \text{post}(v)]\).
 - Implies that u is explored during **DFS(v)** and hence is a descendent of v. Edge \((u, v)\) implies a cycle in G but G is assumed to be DAG!
- Case 2: \([\text{pre}(u), \text{post}(u)]\) is disjoint from \([\text{pre}(v), \text{post}(v)]\).
 - This cannot happen since v would be explored from u.

Example

![Graph Example](https://example.com/graph.png)
Part II

Strong connected components

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an $O(n \cdot (n + m))$ time algorithm.
This lecture: sketch of a $O(n + m)$ time algorithm.

Graph of SCCs G: B, E, F, A, C, D

Meta-graph of SCCs
Let S_1, S_2, \ldots, S_k be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

- Vertices are S_1, S_2, \ldots, S_k
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Reversal and SCCs

Proposition
For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC}.

Proof. Exercise.
SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Is this a DAG?
Sources and Sinks

Definition
- A vertex u is a **source** if it has no in-coming edges.
- A vertex u is a **sink** if it has no out-going edges.

Simple Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

Topological Ordering/Sorting

Definition
A **topological ordering** of $G = (V, E)$ is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:
One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.
Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:
- Pick a source u, output it.
- Remove u and all edges out of u.
- Repeat until graph is empty.

Exercise: prove this gives topological sort.

Exercise: show algorithm can be implemented in $O(m + n)$ time.

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?
Cycles in graphs

Question: Given an *undirected* graph how do we check whether it has a cycle and output one if it has one?

Question: Given an *directed* graph how do we check whether it has a cycle and output one if it has one?

To Remember: Structure of Graphs

Undirected graph: connected components of $G = (V, E)$ partition V and can be computed in $O(m + n)$ time.

Directed graph: the meta-graph G^{SCC} of G can be computed in $O(m + n)$ time. G^{SCC} gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Finding all s of a Directed Graph

Problem

Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited.
for each vertex $u \in V$ not visited yet do
find $SCC(G, u)$ the strong component of u:
Compute $rch(G, u)$ using $DFS(G, u)$
Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$
$SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$
$\forall u \in SCC(G, u)$: Mark u as visited.

Running time: $O(n(n + m))$
Is there an $O(n + m)$ time algorithm?
Structure of a Directed Graph

Graph G

Graph of SCCs \(G^{\text{SCC}} \)

Reminder

\(G^{\text{SCC}} \) is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph \(G^{\text{SCC}} \) is a DAG.

Big Challenge(s)

How do we find a vertex in a sink SCC of \(G^{\text{SCC}} \)?

Can we obtain an implicit topological sort of \(G^{\text{SCC}} \) without computing \(G^{\text{SCC}} \)?

Answer: \(\text{DFS}(G) \) gives some information!

Linear-time Algorithm for \(\text{SCC}s: \) Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let \(u \) be a vertex in a sink SCC of \(G^{\text{SCC}} \)
- Do \(\text{DFS}(u) \) to compute \(\text{SCC}(u) \)
- Remove \(\text{SCC}(u) \) and repeat

Justification

- \(\text{DFS}(u) \) only visits vertices (and edges) in \(\text{SCC}(u) \)
- ... since there are no edges coming out a sink!
- \(\text{DFS}(u) \) takes time proportional to size of \(\text{SCC}(u) \)
- Therefore, total time \(O(n + m) \)!

Linear Time Algorithm

...for computing the strong connected components in G

\[\text{do } \text{DFS}(G^{\text{rev}}) \text{ and output vertices in decreasing post order.} \]
\[\text{Mark all nodes as unvisited} \]
\[\text{for each } u \text{ in the computed order do} \]
\[\text{if } u \text{ is not visited then} \]
\[\text{DFS}(u) \]
\[\text{Let } S_u \text{ be the nodes reached by } u \]
\[\text{Output } S_u \text{ as a strong connected component} \]
\[\text{Remove } S_u \text{ from } G \]

Theorem

Algorithm runs in time \(O(m + n) \) and correctly outputs all the SCCs of \(G \).
Linear Time Algorithm: An Example - Initial steps

Graph G:

Reverse graph G^{rev}:

DFS of reverse graph:

Pre/Post DFS numbering of reverse graph:

Linear Time Algorithm: An Example

Removing connected components: 1

Original graph G with rev post numbers:

DFS from vertex G

SCC computed: $\{G\}$

Removing connected components: 2

DFS from vertex H, remove it.

SCC computed: $\{G\}, \{H\}$

Removing connected components: 3

DFS from vertex B, remove it.

SCC computed: $\{G\}, \{H\}, \{F, B, E\}$
Linear Time Algorithm: An Example

Removing connected components: 4
Do DFS from vertex \(F \)
Remove visited vertices: \(\{ F, B, E \} \).

SCC computed:
\(\{ G \}, \{ H \}, \{ F, B, E \} \)

Exercise:
Given all the strong connected components of a directed graph \(G = (V, E) \) show that the meta-graph \(G^{SCC} \) can be obtained in \(O(m + n) \) time.

Obtaining the meta-graph...
Once the strong connected components are computed.

Exercise:
Given all the strong connected components of a directed graph \(G = (V, E) \) show that the meta-graph \(G^{SCC} \) can be obtained in \(O(m + n) \) time.

SCC computed:
\(\{ G \}, \{ H \}, \{ F, B, E \}, \{ A, C, D \} \)
Which is the correct answer!

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:
- Is the problem solvable when \(G \) is strongly connected?
- Is the problem solvable when \(G \) is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph \(G \) by considering the meta graph \(G^{SCC} \)?
Part V

An Application to make

make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

An Example makefile

```bash
project:  main.o utils.o command.o
c -o project main.o utils.o command.o

main.o:  main.c defs.h
c -c main.c
utils.o:  utils.c defs.h command.h
c -c utils.c
command.o:  command.c defs.h command.h
c -c command.c
```
makefile as a Digraph

- main.c → main.o
- utils.c → utils.o
- defs.h → project
- command.h → command.o
- command.c

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).