Recursion in Algorithm Design

- **Tail Recursion**: problem reduced to a single recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc.
- **Divide and Conquer**: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem. Examples: Closest pair, deterministic median selection, quick sort.
- **Backtracking**: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.
- **Dynamic Programming**: problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memoization to avoid recomputation of common solutions leading to iterative bottom-up algorithm.
Maximum Independent Set in a Graph

Definition
Given undirected graph $G = (V, E)$ a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \notin E$.

Some independent sets in graph above: $\{D\}$, $\{A, C\}$, $\{B, E, F\}$

Maximum Independent Set Problem

Input Graph $G = (V, E)$
Goal Find maximum sized independent set in G

Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$
Goal Find maximum weight independent set in G

- No one knows an efficient (polynomial time) algorithm for this problem
- Problem is NP-Complete and it is believed that there is no polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.
Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

\[
\text{MaxIndSet}(G = (V, E)):\
\begin{align*}
\text{max} &= 0 \\
\text{for each subset } &S \subseteq V \text{ do} \\
&\text{check if } S \text{ is an independent set} \\
&\text{if } S \text{ is an independent set and } w(S) > \text{max} \text{ then} \\
&\quad \text{max} = w(S)
\end{align*}
\]

Output \(\text{max} \)

Running time: suppose \(G \) has \(n \) vertices and \(m \) edges

- \(2^n \) subsets of \(V \)
- checking each subset \(S \) takes \(O(m) \) time
- total time is \(O(m2^n) \)

A Recursive Algorithm

Let \(V = \{v_1, v_2, \ldots, v_n\} \).
For a vertex \(u \) let \(N(u) \) be its neighbors.

Observation

\(v_1 \): vertex in the graph.
One of the following two cases is true

- **Case 1** \(v_1 \) is in some maximum independent set.
- **Case 2** \(v_1 \) is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

\[
\begin{align*}
G_1 &= G - v_1 \text{ obtained by removing } v_1 \text{ and incident edges from } G \\
G_2 &= G - v_1 - N(v_1) \text{ obtained by removing } N(v_1) \cup v_1 \text{ from } G \\
MIS(G) &= \max\{MIS(G_1), MIS(G_2) + w(v_1)\}
\end{align*}
\]

A Recursive Algorithm

\[
\text{RecursiveMIS}(G): \\
\begin{align*}
\text{if } G \text{ is empty then Output } 0 \\
a &= \text{RecursiveMIS}(G - v_1) \\
b &= w(v_1) + \text{RecursiveMIS}(G - v_1 - N(v_1)) \\
\text{Output } \max(a, b)
\end{align*}
\]

Example
Recursive Algorithms

..for Maximum Independent Set

Running time:

$$T(n) = T(n-1) + T(n-1 - \text{deg}(v_1)) + O(1 + \text{deg}(v_1))$$

where \(\text{deg}(v_1)\) is the degree of \(v_1\). \(T(0) = T(1) = 1\) is base case.

Worst case is when \(\text{deg}(v_1) = 0\) when the recurrence becomes

$$T(n) = 2T(n-1) + O(1)$$

Solution to this is \(T(n) = O(2^n)\).

Backtrack Search via Recursion

- Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem)
- Simple recursive algorithm computes/explores the whole tree blindly in some order.
- Backtrack search is a way to explore the tree intelligently to prune the search space
 - Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method
 - Memoization to avoid recomputing same problem
 - Stop the recursion at a subproblem if it is clear that there is no need to explore further.
 - Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.

Sequences

Definition

Sequence: an ordered list \(a_1, a_2, \ldots, a_n\). **Length** of a sequence is number of elements in the list.

Definition

\(a_{i_1}, \ldots, a_{i_k}\) is a **subsequence** of \(a_1, \ldots, a_n\) if \(1 \leq i_1 < i_2 < \ldots < i_k \leq n\).

Definition

A sequence is **increasing** if \(a_1 < a_2 < \ldots < a_n\). It is **non-decreasing** if \(a_1 \leq a_2 \leq \ldots \leq a_n\). Similarly **decreasing** and **non-increasing**.

Example...

- **Sequence**: 6, 3, 5, 2, 7, 8, 1, 9
- **Subsequence** of above sequence: 5, 2, 1
- **Increasing** sequence: 3, 5, 9, 17, 54
- **Decreasing** sequence: 34, 21, 7, 5, 1
- **Increasing subsequence** of the first sequence: 2, 7, 9.
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example
- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Naïve Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```plaintext
algLISNaive(A[1..n]) : 
m = 0 
for each subsequence $B$ of $A$ do 
    if $B$ is increasing and $|B| > m$ then 
        $m = |B|$

Output $m$
```

Running time: $O(n2^n)$.

2^n subsequences of a sequence of length n and $O(n)$ time to check if a given sequence is increasing.

Recursive Approach: Take 1

LIS(smaller($A[1..n], x$)) : length of longest increasing subsequence in $A[1..n]$ with all numbers in subsequence less than x

```plaintext
LIS(A[1..n]):
   Case 1: Does not contain $A[n]$ in which case 
         LIS(A[1..n]) = LIS(A[1..(n - 1)])
   Case 2: contains $A[n]$ in which case LIS(A[1..n]) is not so clear.

Observation
For second case we want to find a subsequence in $A[1..(n - 1)]$
that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS(smaller($A[1..n], x$)) which gives the longest increasing subsequence in $A$ where each number in the sequence is less than $x$.
```
Example

Sequence: $A[1..7] = 6, 3, 5, 2, 7, 8, 1$