Multiplying Numbers

Problem: Given two \(n \)-digit numbers \(x \) and \(y \), compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of \(y \) with \(x \) and adding the partial products.

\[
3141 \\
\times 2718 \\
25128 \\
3141 \\
21987 \\
6282 \\
8537238
\]

Time Analysis of Grade School Multiplication

- Each partial product: \(\Theta(n) \)
- Number of partial products: \(\Theta(n) \)
- Addition of partial products: \(\Theta(n^2) \)
- Total time: \(\Theta(n^2) \)
A Trick of Gauss
Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: \((a + bi)\) and \((c + di)\)

\[(a + bi)(c + di) = ac - bd + (ad + bc)i\]

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute \(ac, bd, (a + b)(c + d)\). Then \((ad + bc) = (a + b)(c + d) - ac - bd\)

Example

\[
1234 \times 5678 = (100 \times 12 + 34) \times (100 \times 56 + 78)
\]

\[
= 10000 \times 12 \times 56 + 100 \times (12 \times 78 + 34 \times 56) + 34 \times 78
\]

\[
1234 \times 5678 = (100 \times 12 + 34) \times (100 \times 56 + 78)
\]

\[
= 10000 \times 12 \times 56
\]

\[
+ 100 \times (12 \times 78 + 34 \times 56)
\]

\[
+ 34 \times 78
\]

Divide and Conquer
Assume \(n\) is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

\(x = x_{n-1}x_{n-2} \ldots x_0\) and \(y = y_{n-1}y_{n-2} \ldots y_0\)

\(x = x_{n-1} \ldots x_{n/2}0 \ldots 0 + x_{n/2-1} \ldots x_0\)

\(x = 10^{n/2}x_L + x_R\) where \(x_L = x_{n-1} \ldots x_{n/2}\) and \(x_R = x_{n/2-1} \ldots x_0\)

Similarly \(y = 10^{n/2}y_L + y_R\) where \(y_L = y_{n-1} \ldots y_{n/2}\) and \(y_R = y_{n/2-1} \ldots y_0\)

Therefore

\[
xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)
\]

\[
= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R
\]
Time Analysis

\[xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) = 10^n x_L y_L + 10^n (x_L y_R + x_R y_L) + x_R y_R \]

4 recursive multiplications of number of size \(n/2 \) each plus 4 additions and left shifts (adding enough 0’s to the right)

\[T(n) = 4T(n/2) + O(n) \quad T(1) = O(1) \]

\(T(n) = 2 \Theta(n^2) \). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Improving the Running Time

\[xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) = 10^n x_L y_L + 10^n (x_L y_R + x_R y_L) + x_R y_R \]

Gauss trick: \(x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R \)

Recursively compute only \(x_L y_L, x_R y_R, (x_L + x_R)(y_L + y_R) \).

Time Analysis

Running time is given by

\[T(n) = 3T(n/2) + O(n) \quad T(1) = O(1) \]

which means \(T(n) = O(n \log 3) = O(n^{1.585}) \)

State of the Art

Schönhage-Strassen 1971: \(O(n \log n \log \log n) \) time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: \(O(n \log n 2^{O(\log^* n)}) \) time

Conjecture

There is an \(O(n \log n) \) time algorithm.

Analyzing the Recurrences

- Basic divide and conquer: \(T(n) = 4T(n/2) + O(n) \), \(T(1) = 1 \). Claim: \(T(n) = \Theta(n^2) \).
- Saving a multiplication: \(T(n) = 3T(n/2) + O(n) \), \(T(1) = 1 \). Claim: \(T(n) = \Theta(n^{1+\log 1.5}) \)

Use recursion tree method:
- In both cases, depth of recursion \(L = \log n \).
- Work at depth \(i \) is \(4^i n/2^i \) and \(3^i n/2^i \) respectively: number of children at depth \(i \) times the work at each child
- Total work is therefore \(n \sum_{i=0}^{L} 2^i \) and \(n \sum_{i=0}^{L} (3/2)^i \) respectively.
Recursion tree analysis

Part II
Selecting in Unsorted Lists

Rank of element in an array

A: an unsorted array of **n** integers

Definition
For 1 ≤ j ≤ n, element of rank j is the j’th smallest element in A.

<table>
<thead>
<tr>
<th>Unsorted array</th>
<th>16</th>
<th>14</th>
<th>34</th>
<th>20</th>
<th>12</th>
<th>5</th>
<th>3</th>
<th>19</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranks</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Sort of array</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td>20</td>
<td>34</td>
</tr>
</tbody>
</table>

Problem - Selection

Input Unsorted array **A** of **n** integers and integer **j**

Goal Find the **j**th smallest number in **A** (rank **j** number)

Median: \(j = \lceil (n + 1)/2 \rceil\)

Simplifying assumption for sake of notation: elements of **A** are distinct
Algorithm I

1. Sort the elements in A
2. Pick jth element in sorted order
 Time taken = $O(n \log n)$

Do we need to sort? Is there an $O(n)$ time algorithm?

Algorithm II

If j is small or $n - j$ is small then
1. Find j smallest/largest elements in A in $O(jn)$ time. (How?)
2. Time to find median is $O(n^2)$.

Divide and Conquer Approach

1. Pick a pivot element a from A
2. Partition A based on a.
 $A_{\text{less}} = \{x \in A \mid x \leq a\}$ and $A_{\text{greater}} = \{x \in A \mid x > a\}$
3. $|A_{\text{less}}| = j$: return a
4. $|A_{\text{less}}| > j$: recursively find jth smallest element in A_{less}
5. $|A_{\text{less}}| < j$: recursively find kth smallest element in A_{greater}
 where $k = j - |A_{\text{less}}|$.

Example

$\begin{bmatrix}
16 & 14 & 34 & 20 & 12 & 5 & 3 & 19 & 11
\end{bmatrix}$
Partitioning step: $O(n)$ time to scan A
- How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $A[1]$.

Say A is sorted in increasing order and $j = n$.
Exercise: show that algorithm takes $\Omega(n^2)$ time.

Intuition: The median
Find the median
Break input
Find median
Use

A game of medians

Divide and Conquer Approach

Idea
- Break input A into many subarrays: L_1, \ldots, L_k.
- Find median m_i in each subarray L_i.
- Find the median x of the medians m_1, \ldots, m_k.
- Intuition: The median x should be close to being a good median of all the numbers in A.
- Use x as pivot in previous algorithm.

Time Analysis

- Tail recursive call: Select element of rank 50 out of 56 elements.
Algorithm for Selection

A storm of medians

```java
select(A, j):
    Form lists \(L_1, L_2, \ldots, L_{\lceil n/5 \rceil}\) where \(L_i = \{A[5i - 4], \ldots, A[5i]\}\)
    Find median \(b_i\) of each \(L_i\) using brute-force
    Find median \(b\) of \(B = \{b_1, b_2, \ldots, b_{\lceil n/5 \rceil}\}\)
    Partition \(A\) into \(A_{\text{less}}\) and \(A_{\text{greater}}\) using \(b\) as pivot
    if \(|A_{\text{less}}| = j\) return \(b\)
    else if \(|A_{\text{less}}| > j\)
        return \(select(A_{\text{less}}, j)\)
    else
        return \(select(A_{\text{greater}}, j - |A_{\text{less}}|)\)
```

How do we find median of \(B\)? Recursively!

Choosing the pivot

A clash of medians

1. Partition array \(A\) into \(\lceil n/5 \rceil\) lists of 5 items each.
 \(L_1 = \{A[1], A[2], \ldots, A[5]\}, L_2 = \{A[6], \ldots, A[10]\}, \ldots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil - 4], \ldots, A[n]\}\)
2. For each \(L_i\) find median \(b_i\) of \(L_i\) using brute-force in \(O(1)\) time.
 Total \(O(n)\) time
3. Let \(B = \{b_1, b_2, \ldots, b_{\lceil n/5 \rceil}\}\)
4. Find median \(b\) of \(B\)

Lemma

Median of \(B\) is an approximate median of \(A\). That is, if \(b\) is used a pivot to partition \(A\), then

\[|A_{\text{less}}| \leq 7n/10 + 6\] and

\[|A_{\text{greater}}| \leq 7n/10 + 6.\]
Running time of deterministic median selection
A dance with recurrences

\[T(n) \leq T(\lceil n/5 \rceil) + \max\{ T(|A_{less}|), T(|A_{greater}|)\} + O(n) \]

From Lemma,

\[T(n) \leq T(\lceil n/5 \rceil) + T(\lceil 7n/10 + 6 \rceil) + O(n) \]

and

\[T(n) = O(1) \quad n < 10 \]

Exercise: show that \(T(n) = O(n) \)

Median of Medians: Proof of Lemma

Proposition

There are at least \(3n/10 - 6 \) elements smaller than the median of medians \(b \).

Proof.

At least half of the \(\lfloor n/5 \rfloor \) groups have at least 3 elements smaller than \(b \), except for the group containing \(b \) which has 2 elements smaller than \(b \). Hence number of elements smaller than \(b \) is:

\[3\lfloor \frac{n/5}{2} \rfloor + 1 - 1 \geq \frac{3n}{10} - 6 \]
Median of Medians: Proof of Lemma

Proposition
There are at least \(\frac{3n}{10} - 6 \) elements smaller than the median of medians \(b \).

Corollary
\(|A_{\text{greater}}| \leq \frac{7n}{10} + 6 \).

Via symmetric argument,

Corollary
\(|A_{\text{less}}| \leq \frac{7n}{10} + 6 \).

Summary: Selection in linear time

Theorem
The algorithm \(\text{select}(A[1 \ldots n], k) \) computes in \(O(n) \) deterministic time the \(k \)-th smallest element in \(A \).

On the other hand, we have:

Lemma
The algorithm \(\text{QuickSelect}(A[1 \ldots n], k) \) computes the \(k \)-th smallest element in \(A \). The running time of \(\text{QuickSelect} \) is \(\Theta(n^2) \) in the worst case.

Questions to ponder

- Why did we choose lists of size 5? Will lists of size 3 work?
- Write a recurrence to analyze the algorithm’s running time if we choose a list of size \(k \).

Median of Medians Algorithm

Due to:
"Time bounds for selection".

How many Turing Award winners in the author list?
All except Vaughn Pratt!
Takeaway Points

- Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- Recursive algorithms naturally lead to recurrences.
- Sometimes one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.