Non-deterministic Finite Automata (NFAs)

Lecture 4
Thursday, September 7, 2017

Differences from DFA
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ϵ-transitions!

Questions:
- Is this a “real” machine?
- What does it do?

NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)
- From q_ϵ on 1
- From q_ϵ on 0
- From q_0 on ϵ
- From q_ϵ on 01
- From q_{00} on 00
NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{ w \mid N$ accepts $w \}$.

NFA acceptance: example

Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1^*01 accepted?
What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

Simulating NFA

Example the first

(N1) $\begin{array}{cccccc}
\text{A} & a, b \\
\text{B} & a \\
\text{C} & b \\
\text{D} & a \\
\text{E} & b \\
\end{array}$

Run it on input $ababa$.
Idea: Keep track of the states where the NFA might be at any given time.

$t = 0$: $\begin{array}{cccccc}
a, b \\
a \\
b \\
a \\
b \\
\end{array}$

Remaining input: $ababa$.

$t = 1$: $\begin{array}{cccccc}
a, b \\
a \\
b \\
a \\
b \\
\end{array}$

Remaining input: $baba$.

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

$\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.
Reminder: Power set

For a set \(Q \) its power set is: \(\mathcal{P}(Q) = 2^Q = \{ X \mid X \subseteq Q \} \) is the set of all subsets of \(Q \).

Example

\(Q = \{1, 2, 3, 4\} \)

\[
\mathcal{P}(Q) = \left\{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\} \right\}
\]

Example

Transition function in detail...

\[
\begin{align*}
\delta(q_\epsilon, \varepsilon) &= \{ q_\epsilon \} \\
\delta(q_\epsilon, 0) &= \{ q_\epsilon, q_0 \} \\
\delta(q_\epsilon, 1) &= \{ q_\epsilon \} \\
\delta(q_0, \varepsilon) &= \{ q_0, q_{00} \} \\
\delta(q_0, 0) &= \{ q_{00} \} \\
\delta(q_0, 1) &= \{ \} \\
\delta(q_{00}, \varepsilon) &= \{ q_{00} \} \\
\delta(q_{00}, 0) &= \{ \} \\
\delta(q_{00}, 1) &= \{ q_p \} \\
\delta(q_p, \varepsilon) &= \{ q_p \} \\
\delta(q_p, 0) &= \{ \} \\
\delta(q_p, 1) &= \{ q_p \}
\end{align*}
\]

Example

Extending the transition function to strings

\(\delta(q, a) \): set of states that \(N \) can go to from \(q \) on reading \(a \in \Sigma \cup \{ \varepsilon \} \).

Want transition function \(\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q) \).

\(\delta^*(q, w) \): set of states reachable on input \(w \) starting in state \(q \).
Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ε-reach(q) is the set of all states that q can reach using only ε-transitions.

More formally, the transition function in an NFA with ε-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has more ε-transitions than necessary. For example, consider the following NFA with ε-transitions

Example

What is:

- $\delta^*(s, \varepsilon)$
- $\delta^*(s, 0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$

Important: Formal definition of the language of NFA above uses δ^* and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^* takes care of that.
Another definition of computation

Definition

\[q \xrightarrow{w}_N p : \text{State } p \text{ of NFA } N \text{ is reachable from } q \text{ on } w \iff \text{there exists a sequence of states } r_0, r_1, \ldots, r_k \text{ and a sequence } x_1, x_2, \ldots, x_k \text{ where } x_i \in \Sigma \cup \{\varepsilon\}, \text{ for each } i, \text{ such that:} \]

- \(r_0 = q, \)
- for each \(i, r_{i+1} \in \delta(r_i, x_{i+1}), \)
- \(r_k = p, \) and
- \(w = x_1x_2x_3\cdots x_k. \)

Definition

\[\delta^* N(q, w) = \{ p \in Q \mid q \xrightarrow{w}_N p \}. \]

Part II

Constructing NFAs

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to “design” programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to “guess and verify” which simplifies design and reduces number of states
- Easy proofs of some closure properties
Example
Strings that represent decimal numbers.

Example
\{strings that contain CS374 as a substring\}
\{strings that contain CS374 or CS473 as a substring\}
\{strings that contain CS374 and CS473 as substrings\}

Example
\(L_k = \{ \text{bitstrings that have a 1 } k \text{ positions from the end} \} \)

A simple transformation

Theorem
For every NFA \(N \) there is another NFA \(N' \) such that \(L(N) = L(N') \) and such that \(N' \) has the following two properties:
- \(N' \) has single final state \(f \) that has no outgoing transitions
- The start state \(s \) of \(N \) is different from \(f \)
Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?
- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.
Closure under Kleene star

Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^\ast$.

Does not work! Why?

Part IV
NFA\text{s} capture Regular Languages
Regular Languages Recap

Regular Languages

- \emptyset regular
- $\{\epsilon\}$ regular
- $\{a\}$ regular for $a \in \Sigma$
- $R_1 \cup R_2$ regular if both are
- R_1R_2 regular if both are
- R^* is regular if R is

Regular Expressions

- \emptyset denotes \emptyset
- ϵ denotes $\{\epsilon\}$
- a denote $\{a\}$
- $r_1 + r_2$ denotes $R_1 \cup R_2$
- r_1r_2 denotes $R_1 R_2$
- r^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.

NFA\’s and Regular Language

Theorem

For every regular language L there is an NFA N such that $L = L(N)$.

Proof strategy:

- For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- Induction on length of r

Base cases: \emptyset, $\{\epsilon\}$, $\{a\}$ for $a \in \Sigma$.

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$.
- $r = r_1^* r_2$. Use closure of NFA languages under concatenation.
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star.
Example

$$(\epsilon+0)(1+10)^*$$

Final NFA simplified slightly to reduce states