Deterministic Finite Automata (DFAs)

Lecture 3
Tuesday, September 5, 2017

DFAs also called Finite State Machines (FSMs)
- The "simplest" model for computers?
- State machines that are common in practice.
 - Vending machines
 - Elevators
 - Digital watches
 - Simple network protocols
- Programs with fixed memory

A simple program
Program to check if a given input string w has odd length

```
int n = 0
While input is not finished
  read next character c
  n ← n + 1
endWhile
If (n is odd) output YES
Else output NO
```

```
bit x = 0
While input is not finished
  read next character c
  x ← flip(x)
endWhile
If (x = 1) output YES
Else output NO
```
Definition 4. A deterministic finite automaton (DFA) is \(M = (Q, \Sigma, \delta, s, A) \) where
- \(Q \) is a finite set whose elements are the states
- \(\Sigma \) is the input alphabet
- \(s \) is the initial state
- \(A \) is the set of final states

5. What is the language recognized if we change the set of final states to be \(\{B\} \) (with initial state \(A \))?

Graphical Representation

- Directed graph with nodes representing states and edge/arc labels representing transitions labeled by symbols in \(\Sigma \)
- For each state (vertex) \(q \) and symbol \(a \in \Sigma \) there is exactly one outgoing edge labeled by \(a \)
- Initial/start state has a pointer (or labeled as \(s, q_0 \) or “start”)
- Some states with double circles labeled as accepting/final states

Another view

- Machine has input written on a read-only tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are accepting
- Machine accepts input string if it is in an accepting state after scanning the last symbol.

Graphical Representation/State Machine

Graphical Representation

- Where does \(001 \) lead? \(10010 \)?
- Which strings end up in accepting state?
- Can you prove it?
- Every string \(w \) has a unique walk that it follows from a given state \(q \) by reading one letter of \(w \) from left to right.

Definition

A DFA \(M \) accepts a string \(w \) iff the unique walk starting at the start state and spelling out \(w \) ends in an accepting state.

Definition

The language accepted (or recognized) by a DFA \(M \) is denoted by \(L(M) \) and defined as: \(L(M) = \{ w \mid M \text{ accepts } w \} \).
Warning

"M accepts language L" does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in \(\Sigma^* \setminus L \).

M "recognizes" L is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) \(M = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \to Q \) is the transition function,
- \(s \in Q \) is the start state,
- \(A \subseteq Q \) is the set of accepting/final states.

Common alternate notation: \(q_0 \) for start state, \(F \) for final states.

DFA Notation

\[M = \left(\hat{Q}, \Sigma, \delta, s, \hat{A} \right) \]

set of all states \(Q \)

transition func \(\delta \)

alphabet \(\Sigma \)

set of all accept states \(A \)

start state \(s \)

Example

\[q_0 \]
0
\[q_1 \]
1
0
\[q_2 \]
1
0
\[q_3 \]
0, 1

- \(Q = \{ q_0, q_1, q_1, q_3 \} \)
- \(\Sigma = \{ 0, 1 \} \)
- \(\delta \)
- \(s = q_0 \)
- \(A = \{ q_0 \} \)
Extending the transition function to strings

Given DFA $M = (Q, \Sigma, \delta, s, A)$. $\delta(q, a)$ is the state that M goes to from q on reading letter a.

Useful to have notation to specify the unique state that M will reach from q on reading string w.

Transition function $\delta^* : Q \times \Sigma^* \to Q$ defined inductively as follows:
- $\delta^*(q, \epsilon) = q$ if $w = \epsilon$
- $\delta^*(q, ax) = \delta^*(\delta(q, a), x)$ if $w = ax$.

Formal definition of language accepted by M

Definition

The language $L(M)$ accepted by a DFA $M = (Q, \Sigma, \delta, s, A)$ is

$\{w \in \Sigma^* | \delta^*(s, w) \in A\}$.

Example

![DFA Diagram]

What is:
- $\delta^*(q_1, \epsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- $\delta^*(q_4, 10)$

Example continued

![DFA Diagram]

- What is $L(M)$ if start state is changed to q_1?
- What is $L(M)$ if final/accept states are set to $\{q_2, q_3\}$ instead of $\{q_0\}$?
Advantages of formal specification

- Necessary for proofs
- Necessary to specify abstractly for class of languages

Exercise: Prove by induction that for any two strings u, v, any state $q, \delta^*(q, uv) = \delta^*(\delta^*(q, u), v)$.

Part II

Constructing DFAs

DFAs: State = Memory

How do we design a DFA M for a given language L? That is $L(M) = L$.

- DFA is a like a program that has fixed amount of memory independent of input size.
- The memory of a DFA is encoded in its states
- The state/memory must capture enough information from the input seen so far that it is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)

DFA Construction: Example

Assume $\Sigma = \{0, 1\}$

- $L = \emptyset, L = \Sigma^*, L = \{\epsilon\}, L = \{0\}$.
- $L = \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by } 5\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ or } 010 \text{ as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end}\}$
DFA Construction: Example

$L = \{\text{Binary numbers congruent to } 0 \mod 5\}$

Example: $1101011 = 107 = 2 \mod 5$, $1010 = 10 = 0 \mod 5$

Key observation:

- $w_0 \mod 5 = a$ implies $w_0 \mod 5 = 2a \mod 5$
- $w_1 \mod 5 = (2a + 1) \mod 5$

Part III

Product Construction and Closure Properties

Part IV

Complement

Question: If M is a DFA, is there a DFA M' such that $L(M') = \Sigma^* \setminus L(M)$? That is, are languages recognized by DFAs closed under complement?
Complement Example...

Just flip the state of the states!

Part V
Product Construction

Complement Theorem

Languages accepted by DFAs are closed under complement.

Proof.
Let $M = (Q, \Sigma, \delta, s, A)$ such that $L = L(M)$.
Let $M' = (Q, \Sigma, \delta', s, Q \setminus A)$. Claim: $L(M') = \overline{L}$. Why?
$\delta'_M = \delta_M$. Thus, for every string w, $\delta'_M(s, w) = \delta_M(s, w)$.
$\delta'_M(s, w) \in A \Rightarrow \delta'_M(s, w) \not\in Q \setminus A$.
$\delta'_M(s, w) \not\in A \Rightarrow \delta'_M(s, w) \in Q \setminus A$.

Union and Intersection

Question: Are languages accepted by DFAs closed under union?
That is, given DFAs M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$?
How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w
- Simulate M_1 on w
- Simulate M_2 on w
- If both accept than $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.
- **Catch:** We want a single DFA M that can only read w once.
- **Solution:** Simulate M_1 and M_2 in parallel by keeping track of states of both machines
Example

\[
M_2 \text{ accepts } #1 = \text{odd}
\]

\[
M_1 \text{ accepts } #0 = \text{odd}
\]

Example II

Accept all binary strings of length divisible by 3 and 5

Assume all edges are labeled by 0, 1.

Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_2, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \to Q \) where

\[
\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
\]

- \(A = A_1 \times A_2 = \{ (q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2 \} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Correctness of construction

Lemma

For each string \(w \), \(\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w)) \).

Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on \(|w| \)

Product construction for union

\(M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \) and \(M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \)

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where \(\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \)
- \(A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\} \)

Theorem

\(L(M) = L(M_1) \cup L(M_2) \).

Set Difference

Theorem

\(M_1, M_2 \) DFAs. There is a DFA \(M \) such that \(L(M) = L(M_1) \setminus L(M_2) \).

Exercise: Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union

Things to know: 2-way DFA

Question: Why are DFAs required to only move right?

Can we allow DFA to scan back and forth? **Caveat:** Tape is read-only so only memory is in machine’s state.

- Can define a formal notion of a “2-way” DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs