Undecidability II: More problems via reductions

Lecture 21
Thursday, November 16, 2017
Turing machines...

$\text{TM} = \text{Turing machine} = \text{program}.$
Definition 1

Language \(L \subseteq \Sigma^* \) is undecidable if no program \(P \), given \(w \in \Sigma^* \) as input, can always stop and output whether \(w \in L \) or \(w \notin L \).

(Usually defined using TM, not programs. But equivalent.)
Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can always stop and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.)
Definition 1

Language \(L \subseteq \Sigma^* \) is undecidable if no program \(P \), given \(w \in \Sigma^* \) as input, can always stop and output whether \(w \in L \) or \(w \notin L \).

(Usually defined using \(\text{TM} \) not programs. But equivalent.)
Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$

Definition 2

A decider for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**.

Turing proved the following:

Theorem 3

A_{TM} is undecidable.
Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**.

Turing proved the following:

Theorem 3

A_{TM} is undecidable.
Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**. Turing proved the following:

Theorem 3

A_{TM} is undecidable.
Part I

Reductions
Meta definition: Problem \textbf{A reduces} to problem \textbf{B}, if given a solution to \textbf{B}, then it implies a solution for \textbf{A}. Namely, we can solve \textbf{B} then we can solve \textbf{A}. We will done this by \textbf{A} \implies \textbf{B}.

Definition 4
oracle \textbf{ORAC} for language \textbf{L} is a function that receives as a word \textbf{w}, returns \textbf{TRUE} \iff \textbf{w} \in \textbf{L}.

Definition 5
\textbf{A language X reduces} to a language \textbf{Y}, if one can construct a \textbf{TM} decider for \textbf{X} using a given oracle \textbf{ORAC}_\textbf{Y} for \textbf{Y}. We will denote this fact by \textbf{X} \implies \textbf{Y}.
Reduction

Meta definition: Problem \(A \) **reduces** to problem \(B \), if given a solution to \(B \), then it implies a solution for \(A \). Namely, we can solve \(B \) then we can solve \(A \). We will done this by \(A \implies B \).

Definition 4

oracle \(\text{ORAC} \) for language \(L \) is a function that receives as a word \(w \), returns \(\text{TRUE} \iff w \in L \).

Definition 5

A language \(X \) **reduces** to a language \(Y \), if one can construct a \(\text{TM} \) decider for \(X \) using a given oracle \(\text{ORAC}_Y \) for \(Y \). We will denote this fact by \(X \implies Y \).
Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will done this by **A \implies B**.

Definition 4

oracle **ORAC** for language **L** is a function that receives as a word **w**, returns TRUE \iff **w** \in **L**.

Definition 5

A language **X reduces** to a language **Y**, if one can construct a **TM** decider for **X** using a given oracle **ORAC_Y** for **Y**. We will denote this fact by **X \implies Y**.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
7. Contradiction **A** is not decidable.
8. Thus, **L** must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: Language of **B**.
4. Assume **L** is decided by **TM** **M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A**_{TM}).
7. Contradiction **A** is not decidable.
8. Thus, **L** must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.

3. **L**: language of **B**.

4. Assume **L** is decided by **TM M**.

5. Create a decider for known undecidable problem **A** using **M**.

6. Result in decider for **A** (i.e., **A_{TM}**).

7. Contradiction **A** is not decidable.

8. Thus, **L** must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of B.
4. Assume L is decided by TM M.
5. Create a decider for known undecidable problem A using M.
6. Result in decider for A (i.e., A_{TM}).
7. Contradiction A is not decidable.
8. Thus, L must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. \(L \): language of \(B \).
4. Assume \(L \) is decided by \(TM \ M \).
5. Create a decider for known undecidable problem \(A \) using \(M \).
6. Result in decider for \(A \) (i.e., \(A_{TM} \)).
7. Contradiction \(A \) is not decidable.
8. Thus, \(L \) must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
7. Contradiction **A** is not decidable.
8. Thus, **L** must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
7. Contradiction **A** is not decidable.
8. Thus, **L** must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM** **M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
7. Contradiction **A** is not decidable.
8. Thus, **L** must be not decidable.
Lemma 6

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).
Lemma 7

Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.
Part II

Halting
The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a } \text{TM} \text{ and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

$$A_{\text{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a } \text{TM} \text{ and } M \text{ accepts } w \right\}.$$
The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

$$A_{\text{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$
On way to proving that Halting is undecidable...

Lemma 8

The language A_{TM} reduces to A_{Halt}. Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM}.
Proof of lemma

Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.

\[
\text{Decider-}A_{\text{TM}}\left(\langle M, w \rangle \right)
\]
\[
\begin{align*}
\text{res} & \leftarrow \text{ORAC}_{\text{Halt}}\left(\langle M, w \rangle \right) \\
\text{if } \text{res} = \text{reject} & \text{ then} \\
& \text{halt and reject.} \\
\text{if } \text{M} \text{ does not halt on } w & \text{ then reject.} \\
\text{else } \text{M} \text{ halts on } w & \text{ since } \text{res} = \text{accept.} \\
& \text{Simulating M on w terminates in finite time.} \\
\text{res}_2 & \leftarrow \text{Simulate M on w.} \\
\text{return } \text{res}_2.
\end{align*}
\]

This procedure always return and as such its a decider for A_{TM}. \qed
The Halting problem is not decidable

Theorem 9

The language A_{Halt} is not decidable.

Proof.

Assume, for the sake of contradiction, that A_{Halt} is decidable. As such, there is a TM, denoted by TM_{Halt}, that is a decider for A_{Halt}. We can use TM_{Halt} as an implementation of an oracle for A_{Halt}, which would imply by Lemma ?? that one can build a decider for A_{TM}. However, A_{TM} is undecidable. A contradiction. It must be that A_{Halt} is undecidable.
... if A_{Halt} is decidable, then A_{TM} is decidable, which is impossible.
Part III

Emptiness
The language of empty languages

1. \(E_{\text{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\} \).

2. \(TM_{ETM} \): Assume we are given this decider for \(E_{\text{TM}} \).

3. Need to use \(TM_{ETM} \) to build a decider for \(A_{\text{TM}} \).

4. Decider for \(A_{\text{TM}} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).

5. Restructure question to be about Turing machine having an empty language.

6. Somehow make the second input (\(w \)) disappear.

7. Idea: hard-code \(w \) into \(M \), creating a \(TM \) \(M_w \) which runs \(M \) on the fixed string \(w \).

8. \(TM \) \(M_w \):
 1. Input = \(x \) (which will be ignored)
 2. Simulate \(M \) on \(w \).
 3. If the simulation accepts, accept. If the simulation rejects, reject.
The language of empty languages

1. \(E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \).

2. \(TM_{ETM} \): Assume we are given this decider for \(E_{TM} \).

3. Need to use \(TM_{ETM} \) to build a decider for \(A_{TM} \).

4. Decider for \(A_{TM} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).

5. Restructure question to be about Turing machine having an empty language.

6. Somehow make the second input \((w)\) disappear.

7. Idea: hard-code \(w \) into \(M \), creating a \(TM \) \(M_w \) which runs \(M \) on the fixed string \(w \).

8. \(TM \) \(M_w \):
 1. Input = \(x \) (which will be ignored)
 2. Simulate \(M \) on \(w \).
 3. If the simulation accepts, accept. If the simulation rejects, reject.
Given program $\langle M \rangle$ and input w...

...can output a program $\langle M_w \rangle$.

The program M_w simulates M on w. And accepts/rejects accordingly.

EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

What is $L(M_w)$?

Since M_w ignores input x.. language M_w is either Σ^* or \emptyset. It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.
Embedding strings...

1. Given program $\langle M \rangle$ and input w...
2. ...can output a program $\langle M_w \rangle$.
3. The program M_w simulates M on w. And accepts/rejects accordingly.
4. **EmbedString($\langle M, w \rangle$)** input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
5. What is $L(M_w)$?
6. Since M_w ignores input x. language M_w is either Σ^* or \emptyset. It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.
Given program \(\langle M \rangle \) and input \(w \)...

...can output a program \(\langle M_w \rangle \).

The program \(M_w \) simulates \(M \) on \(w \). And accepts/rejects accordingly.

EmbedString\((\langle M, w \rangle) \) input two strings \(\langle M \rangle \) and \(w \), and output a string encoding \((TM) \langle M_w \rangle \).

What is \(L(M_w) \)?

Since \(M_w \) ignores input \(x \). language \(M_w \) is either \(\Sigma^* \) or \(\emptyset \). It is \(\Sigma^* \) if \(M \) accepts \(w \), and it is \(\emptyset \) if \(M \) does not accept \(w \).
Theorem 10

The language E_{TM} is undecidable.

1. Assume (for contradiction), that E_{TM} is decidable.
2. TM_{ETM} be its decider.
3. Build decider $AnotherDecider-A_{TM}$ for A_{TM}:

$AnotherDecider-A_{TM}(\langle M, w \rangle)$

$\langle M_w \rangle \leftarrow EmbedString(\langle M, w \rangle)$

$r \leftarrow TM_{ETM}(\langle M_w \rangle)$.

if $r = \text{accept}$ then

 return reject

// $TM_{ETM}(\langle M_w \rangle)$ rejected its input

return accept
Emptiness is undecidable...

Proof continued

Consider the possible behavior of $\text{AnotherDecider-ATM}$ on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-ATM}$ rejects its input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-ATM}$ accepts $\langle M, w \rangle$.

$\Rightarrow \text{AnotherDecider-ATM}$ is decider for A_{TM}.

But A_{TM} is undecidable...

...must be assumption that E_{TM} is decidable is false.
Emptiness is undecidable...

Proof continued

Consider the possible behavior of \textbf{AnotherDecider-}\textsubscript{\(A_{TM}\)} on the input \(\langle M, w \rangle\).

- If \(T_{ETM}\) accepts \(\langle M_w \rangle\), then \(L(M_w)\) is empty. This implies that \(M\) does not accept \(w\). As such, \textbf{AnotherDecider-}\textsubscript{\(A_{TM}\)} rejects its input \(\langle M, w \rangle\).

- If \(T_{ETM}\) accepts \(\langle M_w \rangle\), then \(L(M_w)\) is not empty. This implies that \(M\) accepts \(w\). So \textbf{AnotherDecider-}\textsubscript{\(A_{TM}\)} accepts \(\langle M, w \rangle\).

\(\implies \) \textbf{AnotherDecider-}\textsubscript{\(A_{TM}\)} is decider for \(A_{TM}\).

But \(A_{TM}\) is undecidable...

...must be assumption that \(E_{TM}\) is decidable is false.
Consider the possible behavior of $\text{AnotherDecider-} A_{\text{TM}}$ on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-} A_{\text{TM}}$ rejects its input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-} A_{\text{TM}}$ accepts $\langle M, w \rangle$.

$\implies \quad \text{AnotherDecider-} A_{\text{TM}}$ is decider for A_{TM}.

But A_{TM} is undecidable...

...must be assumption that E_{TM} is decidable is false.
AnotherDecider-A_{TM} never actually runs the code for M_w. It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.
Part IV

Equality
Equality is undecidable

\[EQ_{TM} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM’s and } L(M) = L(N) \} . \]

Lemma 11

The language \(EQ_{TM} \) is undecidable.
Proof.

Suppose that we had a decider \textbf{DeciderEqual} for EQ_{TM}. Then we can build a decider for E_{TM} as follows:

\textbf{TM} R:

1. Input $= \langle M \rangle$
2. Include the (constant) code for a TM T that rejects all its input. We denote the string encoding T by $\langle T \rangle$.
3. Run \textbf{DeciderEqual} on $\langle M, T \rangle$.
4. If \textbf{DeciderEqual} accepts, then accept.
5. If \textbf{DeciderEqual} rejects, then reject.
Part V

Regularity
Many undecidable languages

1. Almost any property defining a TM language induces a language which is undecidable.
2. Proofs all have the same basic pattern.
3. Regularity language:
 \[\text{Regular}_\text{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \right\} . \]
4. DeciderRegL: Assume TM decider for Regular_\text{TM}.
5. Reduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is w ∈ A_\text{TM}) into a problem about whether some TM accepts a regular set of strings.
Given M and w, consider the following TM M'_w:

TM M'_w:

(i) Input = x
(ii) If x has the form $a^n b^n$, halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

2 **not** executing M'_w!

3 feed string $\langle M'_w \rangle$ into **DeciderRegL**

4 **EmbedRegularString**: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w.

5 If M accepts w, then any x accepted by M'_w: $L(M'_w) = \Sigma^*$.

6 If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \geq 0\}$.
1. $a^n b^n$ is not regular...

2. Use DeciderRegL on M'_w to distinguish these two cases.

3. Note - cooked M'_w to the decider at hand.

4. A decider for A_{TM} as follows.

 YetAnotherDecider-$A_{TM}(⟨M, w⟩)$
 $⟨M'_w⟩ \leftarrow \text{EmbedRegularString}(⟨M, w⟩)$
 $r \leftarrow \text{DeciderRegL}(⟨M'_w⟩)$.
 return r

5. If DeciderRegL accepts $\implies L(M'_w)$ regular (its $Σ^*$) $\implies M$ accepts w. So YetAnotherDecider-A_{TM} should accept $⟨M, w⟩$.

6. If DeciderRegL rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n \implies M$ does not accept w \implies YetAnotherDecider-A_{TM} should reject $⟨M, w⟩$.
Proof continued...

1. \(a^n b^n\) is not regular...
2. Use \textbf{DeciderRegL} on \(M'_w\) to distinguish these two cases.
3. Note - cooked \(M'_w\) to the decider at hand.
4. A decider for \(\text{A}_{\text{TM}}\) as follows.

\[
\begin{align*}
\text{YetAnotherDecider-} \text{A}_{\text{TM}} (\langle M, w \rangle) & \\
\langle M'_w \rangle & \leftarrow \text{EmbedRegularString} (\langle M, w \rangle) \\
r & \leftarrow \text{DeciderRegL} (\langle M'_w \rangle).
\end{align*}
\]

return \(r\)

5. If \(\text{DeciderRegL}\) accepts \(\implies L(M'_w)\) regular \((\text{its } \Sigma^*) \implies M\) accepts \(w\). So \text{YetAnotherDecider-} \text{A}_{\text{TM}}\) should accept \(\langle M, w \rangle\).

6. If \(\text{DeciderRegL}\) rejects \(\implies L(M'_w)\) is not regular \(\implies L(M'_w) = a^n b^n \implies M\) does not accept \(w\) \(\implies \) \text{YetAnotherDecider-} \text{A}_{\text{TM}}\) should reject \(\langle M, w \rangle\).
Proof continued...

1. $a^n b^n$ is not regular...

2. Use DeciderRegL on M'_w to distinguish these two cases.

3. Note - cooked M'_w to the decider at hand.

4. A decider for A_{TM} as follows.

 YetAnotherDecider- $A_{TM}(\langle M, w \rangle)$

 $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$

 $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle)$.

 return r

5. If DeciderRegL accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So $\text{YetAnotherDecider-} A_{TM}$ should accept $\langle M, w \rangle$.

6. If DeciderRegL rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n \implies M$ does not accept w \implies YetAnotherDecider- A_{TM} should reject $\langle M, w \rangle$.

Sariel Har-Peled (UIUC)
Proof continued...

1. \(a^n b^n \) is not regular...
2. Use \textbf{DeciderRegL} on \(M'_w \) to distinguish these two cases.
3. Note - cooked \(M'_w \) to the decider at hand.
4. A decider for \(A_{TM} \) as follows.

\[
\text{YetAnotherDecider-} A_{TM} (\langle M, w \rangle) \\
\langle M'_w \rangle \leftarrow \text{EmbedRegularString} (\langle M, w \rangle) \\
r \leftarrow \text{DeciderRegL} (\langle M'_w \rangle). \\
\text{return } r
\]

5. If \textbf{DeciderRegL} accepts \(\Rightarrow L(M'_w) \) regular (its \(\Sigma^* \)) \(\Rightarrow M \) accepts \(w \). So \textbf{YetAnotherDecider-} A_{TM} should accept \(\langle M, w \rangle \).
6. If \textbf{DeciderRegL} rejects \(\Rightarrow L(M'_w) \) is not regular \(\Rightarrow L(M'_w) = a^n b^n \Rightarrow M \) does not accept \(w \) \(\Rightarrow \textbf{YetAnotherDecider-} A_{TM} \) should reject \(\langle M, w \rangle \).
Rice theorem

The above proofs were somewhat repetitious...
...they imply a more general result.

Theorem 12 (Rice’s Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if $L(M) = L(N)$ then $\langle M \rangle \in L \iff \langle N \rangle \in L$.

(b) The set L is “non-trivial,” i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is undecidable.