Greedy Algorithms

Lecture 19
Tuesday, November 7, 2017
Part I

Greedy Algorithms: Tools and Techniques
What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1. make decision incrementally in small steps without backtracking
2. decision at each step is based on improving local or current state in a myopic fashion without paying attention to the global situation
3. decisions often based on some fixed and simple priority rules
What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:
1. make decision incrementally in small steps without backtracking
2. decision at each step is based on improving local or current state in a myopic fashion without paying attention to the global situation
3. decisions often based on some fixed and simple priority rules
What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1. make decision incrementally in small steps *without backtracking*
2. decision at each step is based on improving *local or current* state in a myopic fashion without paying attention to the *global* situation
3. decisions often based on some fixed and simple *priority* rules
Pros and Cons of Greedy Algorithms

Pros:
1. Usually (too) easy to design greedy algorithms
2. Easy to implement and often run fast since they are simple
3. Several important cases where they are effective/optimal
4. Lead to a first-cut heuristic when problem not well understood

Cons:
1. Very often greedy algorithms don’t work. Easy to lull oneself into believing they work
2. Many greedy algorithms possible for a problem and no structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness
Pros and Cons of Greedy Algorithms

Pros:
1. Usually (too) easy to design greedy algorithms
2. Easy to implement and often run fast since they are simple
3. Several important cases where they are effective/optimal
4. Lead to a first-cut heuristic when problem not well understood

Cons:
1. Very often greedy algorithms don’t work. Easy to lull oneself into believing they work
2. Many greedy algorithms possible for a problem and no structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness
Pros and Cons of Greedy Algorithms

Pros:
1. Usually (too) easy to design greedy algorithms
2. Easy to implement and often run fast since they are simple
3. Several important cases where they are effective/optimal
4. Lead to a first-cut heuristic when problem not well understood

Cons:
1. Very often greedy algorithms don’t work. Easy to lull oneself into believing they work
2. Many greedy algorithms possible for a problem and no structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness
Greedy Algorithm Types

Crude classification:

1. **Non-adaptive**: fix some ordering of decisions a priori and stick with the order
2. **Adaptive**: make decisions adaptively but greedily/locally at each step

Plan:

1. See several examples
2. Pick up some proof techniques
Greedy Algorithm Types

Crude classification:

1. **Non-adaptive**: fix some ordering of decisions a priori and stick with the order
2. **Adaptive**: make decisions adaptively but greedily/locally at each step

Plan:

1. See several examples
2. Pick up some proof techniques
Part II

Scheduling Jobs to Minimize Average Waiting Time
The Problem

- n jobs J_1, J_2, \ldots, J_n. J_i has non-negative processing time p_i
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Example: schedule is $J_1, J_2, J_3, J_4, J_5, J_6$. Total waiting time is

\[0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + \ldots = \]

Optimal schedule: Shortest Job First. $J_3, J_5, J_1, J_2, J_6, J_4$.
The Problem

- n jobs J_1, J_2, \ldots, J_n. J_i has non-negative processing time p_i
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i

Example: schedule is $J_1, J_2, J_3, J_4, J_5, J_6$. Total waiting time is

$$0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + \ldots =$$

Optimal schedule: Shortest Job First. $J_3, J_5, J_1, J_2, J_6, J_4$.

<table>
<thead>
<tr>
<th>time</th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
The Problem

- n jobs J_1, J_2, \ldots, J_n. J_i has non-negative processing time p_i
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i

<table>
<thead>
<tr>
<th>time</th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Example: schedule is $J_1, J_2, J_3, J_4, J_5, J_6$. Total waiting time is

$$0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + \ldots =$$

Optimal schedule: Shortest Job First. $J_3, J_5, J_1, J_2, J_6, J_4$.
The Problem

- n jobs J_1, J_2, \ldots, J_n. J_i has non-negative processing time p_i
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Example: schedule is $J_1, J_2, J_3, J_4, J_5, J_6$. Total waiting time is

$$0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + \ldots =$$

Optimal schedule: Shortest Job First. $J_3, J_5, J_1, J_2, J_6, J_4$.
Theorem

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order of processing time and hence \(p_1 \leq p_2 \leq \ldots \leq p_n \) and SJF order is \(J_1, J_2, \ldots, J_n \).
Optimality of Shortest Job First (SJF)

Theorem

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order of processing time and hence $p_1 \leq p_2 \leq \ldots \leq p_n$ and SJF order is J_1, J_2, \ldots, J_n.
Optimality of Shortest Job First (SJF)

Theorem

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order of processing time and hence $p_1 \leq p_2 \leq \ldots \leq p_n$ and SJF order is J_1, J_2, \ldots, J_n.
Optimality of SJF: Proof by picture
Inversions

Definition

A schedule $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ has an inversion if there are jobs J_a and J_b such that S schedules J_a before J_b, but $p_a > p_b$.

Claim

If a schedule has an inversion then there is an inversion between two adjacently scheduled jobs.

Proof: exercise.
Inversions

Definition

A schedule $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ has an inversion if there are jobs J_a and J_b such that S schedules J_a before J_b, but $p_a > p_b$.

Claim

If a schedule has an inversion then there is an inversion between two adjacently scheduled jobs.

Proof: exercise.
Recall \textbf{SJF} order is J_1, J_2, \ldots, J_n.

- Let $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ be an optimum schedule with fewest inversions.
- If schedule has no inversions then it is identical to \textbf{SJF} schedule and we are done.
- Otherwise there is an $1 \leq \ell < n$ such that $i_\ell > i_{\ell+1}$ since schedule has inversion among two adjacently scheduled jobs.

Claim

The schedule obtained from $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ by exchanging/swapping positions of jobs J_{i_ℓ} and $J_{i_{\ell+1}}$ is also optimal and has one fewer inversion.

Assuming claim we obtain a contradiction and hence optimum schedule with fewest inversions must be the \textbf{SJF} schedule.
Proof of optimality of SJF

SJF = Shortest Job First

Recall SJF order is J_1, J_2, \ldots, J_n.

- Let $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ be an optimum schedule with fewest inversions.
- If schedule has no inversions then it is identical to SJF schedule and we are done.
- Otherwise there is an $1 \leq \ell < n$ such that $i_\ell > i_{\ell+1}$ since schedule has inversion among two adjacently scheduled jobs.

Claim

The schedule obtained from $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ by exchanging/swapping positions of jobs J_{i_ℓ} and $J_{i_{\ell+1}}$ is also optimal and has one fewer inversion.

Assuming claim we obtain a contradiction and hence optimum schedule with fewest inversions must be the SJF schedule.
A Weighted Version

- \(n \) jobs \(J_1, J_2, \ldots, J_n \). \(J_i \) has non-negative processing time \(p_i \) and a non-negative weight \(w_i \).
- One server/machine/person available to process jobs.
- Schedule/order the jobs to minimize total or average waiting time.
- Waiting time of \(J_i \) in schedule \(\sigma \): sum of processing times of all jobs scheduled before \(J_i \).
- Goal: minimize total weighted waiting time.

<table>
<thead>
<tr>
<th></th>
<th>(J_1)</th>
<th>(J_2)</th>
<th>(J_3)</th>
<th>(J_4)</th>
<th>(J_5)</th>
<th>(J_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>weight</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Part III

Scheduling to Minimize Lateness
Scheduling to Minimize Lateness

1. Given jobs J_1, J_2, \ldots, J_n with deadlines and processing times to be scheduled on a single resource.

2. If a job i starts at time s_i then it will finish at time $f_i = s_i + t_i$, where t_i is its processing time. d_i: deadline.

3. The lateness of a job is $\ell_i = \max(0, f_i - d_i)$.

4. Schedule all jobs such that $L = \max \ell_i$ is minimized.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_i</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

$\ell_1 = 2$ \quad $\ell_5 = 0$ \quad $\ell_4 = 6$
Scheduling to Minimize Lateness

1. Given jobs J_1, J_2, \ldots, J_n with deadlines and processing times to be scheduled on a single resource.

2. If a job i starts at time s_i then it will finish at time $f_i = s_i + t_i$, where t_i is its processing time. d_i: deadline.

3. The lateness of a job is $\ell_i = \max(0, f_i - d_i)$.

4. Schedule all jobs such that $L = \max \ell_i$ is minimized.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_i</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

$\ell_1 = 2$ $\ell_5 = 0$ $\ell_4 = 6$
Greedy Template

Initially R is the set of all requests

$curr_time = 0$

$max_lateness = 0$

while R is not empty do

choose $i \in R$

$curr_time = curr_time + t_i$

if $(curr_time > d_i)$ then

$max_lateness = \max(curr_time - d_i, max_lateness)$

return $max_lateness$

Main task: Decide the order in which to process jobs in R
Initially R is the set of all requests

$c_{urr_time} = 0$

$max_lateness = 0$

while R is not empty do

choose $i \in R$

$c_{urr_time} = c_{urr_time} + t_i$

if ($c_{urr_time} > d_i$) then

$max_lateness = \max(c_{urr_time} - d_i, max_lateness)$

return $max_lateness$

Main task: Decide the order in which to process jobs in R
Three Algorithms

1. Shortest job first — sort according to t_i.

2. Shortest slack first — sort according to $d_i - t_i$.

3. EDF = Earliest deadline first — sort according to d_i.

Counter examples for first two: exercise
Three Algorithms

1. Shortest job first — sort according to t_i.
2. Shortest slack first — sort according to $d_i - t_i$.
3. EDF = Earliest deadline first — sort according to d_i.

Counter examples for first two: exercise
Theorem

Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma

If there is a feasible schedule then there is one with no idle time before all jobs are finished.
Earliest Deadline First

Theorem

Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Lemma

If there is a feasible schedule then there is one with no idle time before all jobs are finished.
Theorem

Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma

If there is a feasible schedule then there is one with no idle time before all jobs are finished.
Theorem

Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma

If there is a feasible schedule then there is one with no idle time before all jobs are finished.
Inversions

EDF = Earliest Deadline First

Assume jobs are sorted such that \(d_1 \leq d_2 \leq \ldots \leq d_n \). Hence EDF schedules them in this order.

Definition
A schedule \(S \) is said to have an inversion if there are jobs \(i \) and \(j \) such that \(S \) schedules \(i \) before \(j \), but \(d_i > d_j \).

Claim
If a schedule \(S \) has an inversion then there is an inversion between two adjacently scheduled jobs.

Proof: exercise.
Inversions

EDF = Earliest Deadline First

Assume jobs are sorted such that \(d_1 \leq d_2 \leq \ldots \leq d_n \). Hence EDF schedules them in this order.

Definition

A schedule \(S \) is said to have an inversion if there are jobs \(i \) and \(j \) such that \(S \) schedules \(i \) before \(j \), but \(d_i > d_j \).

Claim

If a schedule \(S \) has an inversion then there is an inversion between two adjacently scheduled jobs.

Proof: exercise.
Proof sketch of Optimality of EDP

- Let S be an optimum schedule with smallest number of inversions.
- If S has no inversions then this is same as EDF and we are done.
- Else S has two adjacent jobs i and j with $d_i > d_j$.
- Swap positions of i and j to obtain a new schedule S'

Claim

Maximum lateness of S' is no more than that of S. And S' has strictly fewer inversions than S.
Part IV

Maximum Weight Subset of Elements: Cardinality and Beyond
Picking k elements to maximize total weight

1. Given n items each with non-negative weights/profits and integer $1 \leq k \leq n$.

2. Goal: pick k elements to maximize total weight of items picked.

<table>
<thead>
<tr>
<th>weight</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

$k = 2$:
$k = 3$:
$k = 4$:
Greedy Template

\[N \] is the set of all elements \(X \leftarrow \emptyset \)
(* \(X \) will store all the elements that will be picked *)

while \(|X| < k\) and \(N\) is not empty do
 choose \(e_j \in N \) of maximum weight
 add \(e_j \) to \(X \)
 remove \(e_j \) from \(N \)

return the set \(X \)

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight order and picking the top \(k \) elements but the above template generalizes to other settings a bit more easily.

Theorem

Greedy is optimal for picking \(k \) elements of maximum weight.
Greedy Template

\[N \] is the set of all elements \(X \leftarrow \emptyset \)
\((* \ X \text{ will store all the elements that will be picked } *)\)

while \(|X| < k\) and \(N\) is not empty do

choose \(e_j \in N\) of maximum weight

add \(e_j\) to \(X\)

remove \(e_j\) from \(N\)

return the set \(X\)

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight order and picking the top \(k\) elements but the above template generalizes to other settings a bit more easily.

Theorem

Greedy is optimal for picking \(k\) elements of maximum weight.
A more interesting problem

1. Given \(n \) items \(N = \{e_1, e_2, \ldots, e_n\} \). Each item \(e_i \) has a non-negative weight \(w_i \).

2. Items partitioned into \(h \) sets \(N_1, N_2, \ldots, N_h \). Think of each item having one of \(h \) colors.

3. Given integers \(k_1, k_2, \ldots, k_h \) and another integer \(k \)

4. Goal: pick \(k \) elements such that no more than \(k_i \) from \(N_i \) to maximize total weight of items picked.

\[
\begin{array}{cccccccc}
& e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 \\
weight & 9 & 5 & 4 & 7 & 5 & 2 & 1 \\
\end{array}
\]

\(N_1 = \{e_1, e_2, e_3\}, N_2 = \{e_4, e_5\}, N_3 = \{e_6, e_7\} \)
\(k = 4, k_1 = 2, k_2 = 1, k_3 = 2 \)
Greedy Template

\[N \] is the set of all elements \[X ← ∅ \]
(* \[X \] will store all the elements that will be picked *)

\textbf{while} \[N \] is not empty \textbf{do}

\[N' = \{ e_i ∈ N \mid X \cup \{ e_i \} \text{ is feasible} \} \]

\textbf{if} \[N' = ∅ \] \textbf{then} break

choose \[e_j ∈ N' \] of maximum weight

add \[e_j \] to \[X \]

remove \[e_j \] from \[N \]

\textbf{return} the set \[X \]

Theorem

\textbf{Greedy is optimal for the problem on previous slide.}

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight independent set in a \textbf{matroid}. Beyond scope of course.
The Greedy Template:

\[N \text{ is the set of all elements } X \leftarrow \emptyset \]

(* \(X \) will store all the elements that will be picked *)

\[\text{while } N \text{ is not empty do} \]

\[N' = \{ e_i \in N \mid X \cup \{ e_i \} \text{ is feasible} \} \]

\[\text{if } N' = \emptyset \text{ then break} \]

choose \(e_j \in N' \) of maximum weight

add \(e_j \) to \(X \)

remove \(e_j \) from \(N \)

\[\text{return the set } X \]

Theorem

Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight independent set in a **matroid**. Beyond scope of course.
Part V

Interval Scheduling
Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

- Two jobs with overlapping intervals cannot both be scheduled!
Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

1. Two jobs with overlapping intervals cannot both be scheduled!
Greedy Template

\[R \text{ is the set of all requests} \]
\[X \leftarrow \emptyset \text{ (* } X \text{ will store all the jobs that will be scheduled *)} \]

while \(R \) is not empty do
 choose \(i \in R \)
 add \(i \) to \(X \)
 remove from \(R \) all requests that overlap with \(i \)
return the set \(X \)

Main task: Decide the order in which to process requests in \(R \)
Greedy Template

\(R \) is the set of all requests
\(X \leftarrow \emptyset \) (* \(X \) will store all the jobs that will be scheduled *)

while \(R \) is not empty do

choose \(i \in R \)
add \(i \) to \(X \)
remove from \(R \) all requests that overlap with \(i \)

return the set \(X \)

Main task: Decide the order in which to process requests in \(R \)
Process jobs in the order of their starting times, beginning with those that start earliest.
Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.
Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.
Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.
Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.
Process jobs in the order of their starting times, beginning with those that start earliest.
Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.

Figure: Counter example for earliest start time
Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.

Figure: Counter example for earliest start time
Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.

\[\text{Figure: Counter example for earliest start time} \]
Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

___ ___ ___ ___ ___ ___ ____

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

___ ___ ___ ___
Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.
Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.
Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.
Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

Figure: Counter example for smallest processing time
Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

Figure: Counter example for smallest processing time
Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

Figure: Counter example for smallest processing time
Fewest Conflicts

Process jobs in that have the fewest "conflicts" first.

_____ _____ _____ _____

_____ _____

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.
Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

[Diagram of process jobs with fewest conflicts highlighted]
Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

___ ___

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.
Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

____ ____ ____ ____

____ ____ ____

____ ____

____ ____

Figure: Counter example for fewest conflicts
Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

___ ___ ___ ___ ___

___ ___ ___

___ ___

___ ___

Figure: Counter example for fewest conflicts
Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts
Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts
Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.
Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.
Process jobs in the order of their finishing times, beginning with those that finish earliest.
Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.
Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.
Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.
Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.
Optimal Greedy Algorithm

- R is the set of all requests
- $X \leftarrow \emptyset$ (* X stores the jobs that will be scheduled *)
- while R is not empty
 - choose $i \in R$ such that finishing time of i is smallest
 - add i to X
 - remove from R all requests that overlap with i
- return X

Theorem

The greedy algorithm that picks jobs in the order of their finishing times is optimal.
Proving Optimality

1. **Correctness:** Clearly the algorithm returns a set of jobs that does not have any conflicts.

2. For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.

Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts

For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$
Proving Optimality

1. **Correctness:** Clearly the algorithm returns a set of jobs that does not have any conflicts.

2. For a set of requests \(R \), let \(O \) be an optimal set and let \(X \) be the set returned by the greedy algorithm. Then \(O = X \)? Not likely!

Instead we will show that \(|O| = |X| \)
1. **Correctness:** Clearly the algorithm returns a set of jobs that does not have any conflicts.

2. For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.
Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts.

For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.
1. **Correctness:** Clearly the algorithm returns a set of jobs that does not have any conflicts.

2. For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.
Proof of Optimality: Key Lemma

Lemma

Let i_1 be first interval picked by Greedy. There exists an optimum solution that contains i_1.

Proof.

Let O be an arbitrary optimum solution. If $i_1 \in O$ we are done.

Claim: If $i_1 \notin O$ then there is exactly one interval $j_1 \in O$ that conflicts with i_1 (proof later)

1. Form a new set O' by removing j_1 from O and adding i_1, that is $O' = (O - \{j_1\}) \cup \{i_1\}$.
2. From claim, O' is a feasible solution (no conflicts).
3. Since $|O'| = |O|$, O' is also an optimum solution and it contains i_1.
Proof of Optimality: Key Lemma

Lemma

Let i_1 be first interval picked by Greedy. There exists an optimum solution that contains i_1.

Proof.

Let O be an arbitrary optimum solution. If $i_1 \in O$ we are done.

Claim: If $i_1 \notin O$ then there is exactly one interval $j_1 \in O$ that conflicts with i_1. (proof later)

1. Form a new set O' by removing j_1 from O and adding i_1, that is $O' = (O - \{j_1\}) \cup \{i_1\}$.
2. From claim, O' is a feasible solution (no conflicts).
3. Since $|O'| = |O|$, O' is also an optimum solution and it contains i_1.

Proof of Optimality: Key Lemma

Lemma

Let i_1 be first interval picked by Greedy. There exists an optimum solution that contains i_1.

Proof.

Let O be an arbitrary optimum solution. If $i_1 \in O$ we are done.

Claim: If $i_1 \not\in O$ then there is exactly one interval $j_1 \in O$ that conflicts with i_1. (proof later)

1. Form a new set O' by removing j_1 from O and adding i_1, that is $O' = (O - \{j_1\}) \cup \{i_1\}$.
2. From claim, O' is a feasible solution (no conflicts).
3. Since $|O'| = |O|$, O' is also an optimum solution and it contains i_1.

\Box
Proof of Claim

Claim

If \(i_1 \not\in O \), there is exactly one interval \(j_1 \in O \) that conflicts with \(i_1 \).

Proof.

1. If no \(j \in O \) conflicts with \(i_1 \) then \(O \) is not optimal!
2. Suppose \(j_1, j_2 \in O \) such that \(j_1 \neq j_2 \) and both \(j_1 \) and \(j_2 \) conflict with \(i_1 \).
3. Since \(i_1 \) has earliest finish time, \(j_1 \) and \(i_1 \) overlap at \(f(i_1) \).
4. For same reason \(j_2 \) also overlaps with \(i_1 \) at \(f(i_1) \).
5. Implies that \(j_1, j_2 \) overlap at \(f(i_1) \) but intervals in \(O \) cannot overlap.

See figure in next slide.
Figure: Since i_1 has the earliest finish time, any interval that conflicts with it does so at $f(i_1)$. This implies j_1 and j_2 conflict.
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: \(n = 1 \). Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for \(i < n \).

Let \(I \) be an instance with \(n \) intervals

\(I' \): \(I \) with \(i_1 \) and all intervals that overlap with \(i_1 \) removed

\(G(I), G(I') \): Solution produced by Greedy on \(I \) and \(I' \)

From Lemma, there is an optimum solution \(O \) to \(I \) and \(i_1 \in O \).

Let \(O' = O - \{i_1\} \). \(O' \) is a solution to \(I' \).

\[
\begin{align*}
|G(I)| &= 1 + |G(I')| & \text{(from Greedy description)} \\
&\geq 1 + |O'| & \text{(By induction, } G(I') \text{ is optimum for } I') \\
&= |O|
\end{align*}
\]
Implementation and Running Time

Initially R is the set of all requests
\[X \leftarrow \emptyset \] (* X stores the jobs that will be scheduled *)
while R is not empty
 choose \(i \in R \) such that finishing time of i is least
 if i does not overlap with requests in X
 add i to X
 remove i from R
return the set X

- Presort all requests based on finishing time. $O(n \log n)$ time
- Now choosing least finishing time is $O(1)$
- Keep track of the finishing time of the last request added to A. Then check if starting time of i later than that
- Thus, checking non-overlapping is $O(1)$
- Total time $O(n \log n + n) = O(n \log n)$
Comments

1. Interesting Exercise: smallest interval first picks at least half the optimum number of intervals.

2. All requests need not be known at the beginning. Such *online* algorithms are a subject of research.
Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time s_i, a finish time f_i, and a weight w_i. We would like to find a set S of compatible jobs whose total weight is maximized. Which of the following greedy algorithms finds the optimum schedule?

(A) Earliest start time first.
(B) Earliest finish time first.
(C) Highest weight first.
(D) None of the above.
(E) IDK.

Weighted problem can be solved via dynamic programming. See notes.
Weighted Interval Scheduling

Suppose we are given \(n \) jobs. Each job \(i \) has a start time \(s_i \), a finish time \(f_i \), and a weight \(w_i \). We would like to find a set \(S \) of compatible jobs whose total weight is maximized. Which of the following greedy algorithms finds the optimum schedule?

(A) Earliest start time first.
(B) Earliest finish time first.
(C) Highest weight first.
(D) None of the above.
(E) IDK.

Weighted problem can be solved via dynamic programming. See notes.
1 Greedy’s first step leads to an optimum solution. Show that there is an optimum solution leading from the first step of Greedy and then use induction. Example, Interval Scheduling.

2 Greedy algorithm stays ahead. Show that after each step the solution of the greedy algorithm is at least as good as the solution of any other algorithm. Example, Interval scheduling.

3 Structural property of solution. Observe some structural bound of every solution to the problem, and show that greedy algorithm achieves this bound. Example, Interval Partitioning (see Kleinberg-Tardos book).

4 Exchange argument. Gradually transform any optimal solution to the one produced by the greedy algorithm, without hurting its optimality. Example, Minimizing lateness.
Takeaway Points

1. Greedy algorithms come naturally but often are incorrect. A proof of correctness is an absolute necessity.

2. *Exchange* arguments are often the key proof ingredient. Focus on why the first step of the algorithm is correct: need to show that there is an optimum/correct solution with the first step of the algorithm.

3. Thinking about correctness is also a good way to figure out which of the many greedy strategies is likely to work.