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Today

Two topics:

Structure of directed graphs

DFS and its properties

One application of DFS to obtain fast algorithms
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Part I

Depth First Search (DFS)
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Depth First Search

1 DFS special case of Basic Search.

2 DFS is useful in understanding graph structure.
3 DFS used to obtain linear time (O(m + n)) algorithms for

1 Finding cut-edges and cut-vertices of undirected graphs
2 Finding strong connected components of directed graphs
3 Linear time algorithm for testing whether a graph is planar

4 ...many other applications as well.
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DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

Set pred(u) to null

T is set to ∅
while ∃ unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

for each uv in Out(u) do
if v is not visited then

add edge uv to T
set pred(v) to u
DFS(v)

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.
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Example

1
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Edges classified into two types: uv ∈ E is a

1 tree edge: belongs to T
2 non-tree edge: does not belong to T
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Properties of DFS tree

Proposition
1 T is a forest

2 connected components of T are same as those of G .
3 If uv ∈ E is a non-tree edge then, in T , either:

1 u is an ancestor of v , or
2 v is an ancestor of u.

Question: Why are there no cross-edges?
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DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

T is set to ∅
time = 0
while ∃unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time
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1 [1, 16]
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4 [3, 14]
5 [4, 13]
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pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS
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DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited

add edge (u, v) to T
DFS(v)

post(u) = ++time
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Example

AB C

DE F

G H
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Example

AB C

DE F

G H

[1, 16]

[2, 11] [12, 15]

[13, 14][3, 10] [6, 7]

[4, 5]

[8, 9]
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DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in
T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in directed graphs but
it is.
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DFS Tree

Edges of G can be classified with respect to the DFS tree T as:

1 Tree edges that belong to T
2 A forward edge is a non-tree edges (x, y) such that

pre(x) < pre(y) < post(y) < post(x).

3 A backward edge is a non-tree edge (y , x) such that
pre(x) < pre(y) < post(y) < post(x).

4 A cross edge is a non-tree edges (x, y) such that the intervals
[pre(x), post(x)] and [pre(y), post(y)] are disjoint.
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Types of Edges

A

C D
Cross

Forward
Backward

B
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Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?
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Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C .

DFS based algorithm:

1 Compute DFS(G)

2 If there is a back edge e = (v , u) then G is not a DAG. Output
cyclce C formed by path from u to v in T plus edge (v , u).

3 Otherwise output nodes in decreasing post-visit order. Note: no
need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.
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Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable
from vi .
Therefore, (vi−1, vi) (or (vk , v1) if i = 1) is a back edge.
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Proof

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.
Assume post(v) > post(u) and (u, v) is an edge in G . We derive
a contradiction. One of two cases holds from DFS property.

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
Implies that u is explored during DFS(v) and hence is a
descendent of v . Edge (u, v) implies a cycle in G but G is
assumed to be DAG!

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
This cannot happen since v would be explored from u.
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Example

a b c

d e

f g

h
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Part II

Strong connected components
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Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an O(n · (n + m)) time algorithm.
This lecture: sketch of a O(n + m) time
algorithm.

AB C

DE F

G H
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Graph of SCCs

G:

AB C

DE F

G H

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs

Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs)
of G. The graph of SCCs is GSCC

1 Vertices are S1, S2, . . . Sk

2 There is an edge (Si , Sj) if there is some u ∈ Si and v ∈ Sj
such that (u, v) is an edge in G.
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Reversal and SCCs

Proposition
For any graph G, the graph of SCCs of G rev is the same as the
reversal of GSCC.

Proof.
Exercise.
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SCCs and DAGs

Proposition

For any graph G, the graph GSCC has no directed cycle.

Proof.

If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk should
be in the same SCC in G. Formal details: exercise.
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Part III

Directed Acyclic Graphs
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Directed Acyclic Graphs

Definition
A directed graph G is a
directed acyclic graph
(DAG) if there is no directed
cycle in G. 1

2 3

4
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Is this a DAG?

a
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e

c
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b

d

Sariel Har-Peled (UIUC) CS374 28 Fall 2017 28 / 60



Sources and Sinks

source sink

1

2 3

4

Definition
1 A vertex u is a source if it has no in-coming edges.

2 A vertex u is a sink if it has no out-going edges.
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Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.
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Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.
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Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V ,E) is an
ordering ≺ on V such that if (u, v) ∈ E then u ≺ v .

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:

1 Pick a source u, output it.

2 Remove u and all edges out of u.

3 Repeat until graph is empty.

Exercise: prove this gives topological sort.

Exercise: show algorithm can be implemented in O(m + n) time.
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Topological Sort: Example

a b c

d e

f g

h
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered only if it is a DAG.

Proof.
Suppose G is not a DAG and has a topological ordering ≺. G has a
cycle C = u1, u2, . . . , uk , u1.
Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!
That is... u1 ≺ u1.
A contradiction (to ≺ being an order).
Not possible to topologically order the vertices.
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DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?
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Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?
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To Remember: Structure of Graphs

Undirected graph: connected components of G = (V ,E)
partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph GSCC of G can be computed in
O(m + n) time. GSCC gives information on the partition of V into
strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms
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Part IV

Linear time algorithm for finding all
strong connected components of a

directed graph
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Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)
Compute rch(G rev, u) using DFS(G rev, u)
SCC(G , u)⇐ rch(G , u) ∩ rch(G rev, u)
∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?
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Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)
Compute rch(G rev, u) using DFS(G rev, u)
SCC(G , u)⇐ rch(G , u) ∩ rch(G rev, u)
∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?
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Structure of a Directed Graph

AB C

DE F

G H

Graph G

B,E , F

G H

A,C ,D

Graph of SCCs GSCC

Reminder

GSCC is created by collapsing every strong connected component to a
single vertex.

Proposition

For a directed graph G, its meta-graph GSCC is a DAG.
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)
2

3

4
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)
2 ... since there are no edges coming out a sink!

3

4
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)
2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)
2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)
4 Therefore, total time O(n + m)!
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Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!
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Linear Time Algorithm
...for computing the strong connected components in G

do DFS(G rev) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Theorem
Algorithm runs in time O(m + n) and correctly outputs all the SCCs
of G .
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Linear Time Algorithm: An Example - Initial steps

Graph G:

G

FE

B C

D

H

A

=⇒

Reverse graph G rev:

G

FE

B C

D

H

A

=⇒

DFS of reverse graph:

G

FE

B C

D

H

A

=⇒

Pre/Post DFS numbering
of reverse graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A
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Linear Time Algorithm: An Example
Removing connected components: 1

Original graph G with rev post
numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4 =⇒

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}
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Linear Time Algorithm: An Example
Removing connected components: 2

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=⇒

Do DFS from vertex H ,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}
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Linear Time Algorithm: An Example
Removing connected components: 3

Do DFS from vertex H ,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=⇒

Do DFS from vertex B
Remove visited vertices:
{F ,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F ,B,E}
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Linear Time Algorithm: An Example
Removing connected components: 4

Do DFS from vertex F
Remove visited vertices:
{F ,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F ,B,E}

=⇒

Do DFS from vertex A
Remove visited vertices:
{A,C ,D}.

SCC computed:
{G}, {H}, {F ,B,E}, {A,C ,D}
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Linear Time Algorithm: An Example
Final result

G

FE

B C

D

H

A

SCC computed:
{G}, {H}, {F ,B,E}, {A,C ,D}
Which is the correct answer!
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Obtaining the meta-graph...
Once the strong connected components are computed.

Exercise:
Given all the strong connected components of a directed graph
G = (V ,E) show that the meta-graph GSCC can be obtained in
O(m + n) time.
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Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

Is the problem solvable when G is strongly connected?

Is the problem solvable when G is a DAG?

If the above two are feasible then is the problem solvable in a
general directed graph G by considering the meta graph GSCC?
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Part V

An Application to make
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Make/Makefile

(A) I know what make/makefile is.

(B) I do NOT know what make/makefile is.
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make Utility [Feldman]

1 Unix utility for automatically building large software applications
2 A makefile specifies

1 Object files to be created,
2 Source/object files to be used in creation, and
3 How to create them
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An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c
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makefile as a Digraph

project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c
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Computational Problems for make

1 Is the makefile reasonable?

2 If it is reasonable, in what order should the object files be
created?

3 If it is not reasonable, provide helpful debugging information.

4 If some file is modified, find the fewest compilations needed to
make application consistent.
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Algorithms for make

1 Is the makefile reasonable? Is G a DAG?

2 If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

3 If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

1 Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them in proper order.
Verify that one can find the files to recompile and the ordering
in linear time.
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Take away Points

1 Given a directed graph G, its SCCs and the associated acyclic
meta-graph GSCC give a structural decomposition of G that
should be kept in mind.

2 There is a DFS based linear time algorithm to compute all the
SCCs and the meta-graph. Properties of DFS crucial for the
algorithm.

3 DAGs arise in many application and topological sort is a key
property in algorithm design. Linear time algorithms to compute
a topological sort (there can be many possible orderings so not
unique).

Sariel Har-Peled (UIUC) CS374 60 Fall 2017 60 / 60


	Depth First Search (DFS)
	DFS
	DFS in Directed Graphs

	Strong connected components
	Directed Acyclic Graphs
	Linear time algorithm for finding all strong connected components of a directed graph
	An Application to make
	make utility
	Computational Problems



