NFAs continued, Closure
Properties of Regular Languages

Lecture 5
Tuesday, September 12, 2017
Theorem

Languages accepted by **DFA**s, **NFA**s, and regular expressions are the same.

- **DFA**s are special cases of **NFA**s (trivial)
- **NFA**s accept regular expressions (we saw already)
- **DFA**s accept languages accepted by **NFA**s (today)
- Regular expressions for languages accepted by **DFA**s (later in the course)
Regular Languages, DFAs, NFAs

Theorem

Languages accepted by **DFAs**, **NFAs**, and regular expressions are the same.

- **DFAs** are special cases of **NFAs** (trivial)
- **NFAs** accept regular expressions (we saw already)
- **DFAs** accept languages accepted by **NFAs** (today)
- Regular expressions for languages accepted by **DFAs** (later in the course)
Part I

Equivalence of NFAs and DFAs
Equivalence of NFAs and DFAs

Theorem

For every NFA N there is a DFA M such that $L(M) = L(N)$.
Formal Tuple Notation for NFA

Definition

A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- **\(Q \)** is a finite set whose elements are called states,
- **\(\Sigma \)** is a finite set called the input alphabet,
- **\(\delta : Q \times \Sigma \cup \{\epsilon\} \rightarrow P(Q) \)** is the transition function (here \(P(Q) \) is the power set of \(Q \)),
- **\(s \in Q \)** is the start state,
- **\(A \subseteq Q \)** is the set of accepting/final states.

\(\delta(q, a) \) for \(a \in \Sigma \cup \{\epsilon\} \) is a subset of \(Q \) — a set of states.
Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ-reach(q) is the set of all states that q can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$-reach($q$)
- if $w = a$ where $a \in \Sigma$
 \[\delta^*(q, a) = \bigcup_{p \in \epsilon\text{-reach}(q)} \left(\bigcup_{r \in \delta(p, a) \epsilon\text{-reach}(r)} \right) \]
- if $w = xa$,
 \[\delta^*(q, w) = \bigcup_{p \in \delta^*(q, x)} \left(\bigcup_{r \in \delta(p, a) \epsilon\text{-reach}(r)} \right) \]
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.$$
Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
 - It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x.
 - Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N.

Thus the state space of the DFA should be $\mathcal{P}(Q)$.
Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x.
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N.

Thus the state space of the DFA should be $\mathcal{P}(Q)$.
Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA \(N \) on input \(w \).
- What does it need to store after seeing a prefix \(x \) of \(w \)?
- It needs to know at least \(\delta^*(s, x) \), the set of states that \(N \) could be in after reading \(x \).
- Is it sufficient? Yes, if it can compute \(\delta^*(s, xa) \) after seeing another symbol \(a \) in the input.
- When should the program accept a string \(w \)? If \(\delta^*(s, w) \cap A \neq \emptyset \).

Key Observation: A DFA \(M \) that simulates \(N \) should keep in its memory/state the set of states of \(N \).

Thus the state space of the DFA should be \(\mathcal{P}(Q) \).
Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x.
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N.

Thus the state space of the DFA should be $\mathcal{P}(Q)$.
Simulating NFA

Example the first revisited

Previous lecture.. Ran

\[\text{NFA}^{(N1)} \]

on input \textit{ababa}.

\[t = 0: \]

\[t = 1: \]

\[t = 2: \]

\[t = 3: \]

\[t = 4: \]

\[t = 5: \]
Example: DFA from NFA

NFA: \((N1)\)

DFA:
NFA \(N = (Q, \Sigma, s, \delta, A) \). We create a DFA \(M = (Q', \Sigma, \delta', s', A') \) as follows:

- \(Q' = \mathcal{P}(Q) \)
- \(s' = \varepsilon\text{reach}(s) = \delta^*(s, \varepsilon) \)
- \(A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\} \)
- \(\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a) \) for each \(X \subseteq Q, a \in \Sigma \).
Subset Construction

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon\text{reach}(s) = \delta^*(s, \epsilon)$
- $A' = \{X \subseteq Q | X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Sariel Har-Peled (UIUC)
Subset Construction

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \varepsilon\text{reach}(s) = \delta^*(s, \varepsilon)$
- $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.
NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA
$M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \varepsilon\text{reach}(s) = \delta^*(s, \varepsilon)$
- $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q, a \in \Sigma$.
Example

No ϵ-transitions

![Diagram of an NFA with no ϵ-transitions](image)

- q_0 to q_1 with input 1
- q_0 and q_1 with input 0, 1
Example

No \(\epsilon \)-transitions

\[
\begin{align*}
\text{NFA} & \quad \text{DFA} \\
q_0 & \rightarrow 0,1 & q_0 & \rightarrow 0,1 \\
& \rightarrow 1 & & \\
q_0 & \rightarrow \{q_0, q_1\} & 0 & \rightarrow \{q_1\} \\
& \rightarrow 0,1 & 1 & \rightarrow 0,1 \\
q_1 & \rightarrow \{q_1\} & & \\
& \rightarrow \{\} & \\
\end{align*}
\]
Incremental construction

Only build states reachable from \(s' = \epsilon \text{reach}(s) \) the start state of \(M \)

\[
\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)
\]
Incremental algorithm

- Build M beginning with start state $s' \equiv \epsilon \text{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $Y = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.
- If Y is a new state add it to reachable states that need to explored.

To compute $\delta^*(q, a)$ - set of all states reached from q on string a

- Compute $X = \epsilon \text{reach}(q)$
- Compute $Y = \bigcup_{p \in X} \delta(p, a)$
- Compute $Z = \epsilon \text{reach}(Y) = \bigcup_{r \in Y} \epsilon \text{reach}(r)$
Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $M = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then $L(N) = L(M)$.

Stronger claim:

Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_M(s', w)$.

Proof by induction on $|w|$.

Base case: $w = \epsilon$.

$\delta^*_N(s, \epsilon) = \epsilon\text{reach}(s)$.

$\delta^*_M(s', \epsilon) = s' = \epsilon\text{reach}(s)$ by definition of s'.
Proof of Correctness

Theorem

Let \(N = (Q, \Sigma, s, \delta, A) \) be a NFA and let \(M = (Q', \Sigma, \delta', s', A') \) be a DFA constructed from \(N \) via the subset construction. Then \(L(N) = L(M) \).

Stronger claim:

Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_M(s', w) \).

Proof by induction on \(|w| \).

Base case: \(w = \epsilon \).

\(\delta^*_N(s, \epsilon) = \epsilon \text{reach}(s) \).

\(\delta^*_M(s', \epsilon) = s' = \epsilon \text{reach}(s) \) by definition of \(s' \).
Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_M(s', w) \).

Inductive step: \(w = xa \)
(Note: suffix definition of strings)
\[
\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)
\]
by inductive definition of \(\delta^*_N \)
\[
\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a)
\]
by inductive definition of \(\delta^*_M \)

By inductive hypothesis: \(Y = \delta^*_N(s, x) = \delta^*_M(s, x) \)

Thus \(\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a) \) by definition of \(\delta_M \).

Therefore,
\[
\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)
\]
which is what we need.
Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_M(s', w) \).

Inductive step: \(w = xa \)
\[\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a) \]
by inductive definition of \(\delta^*_N \)
\[\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a) \]
by inductive definition of \(\delta^*_M \)

By inductive hypothesis: \(Y = \delta^*_N(s, x) = \delta^*_M(s, x) \)

Thus \(\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a) \) by definition of \(\delta_M \).

Therefore,
\[\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa) \]
which is what we need.
Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_M(s', w)$.

Inductive step: $w = xa$
(Note: suffix definition of strings)

$\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)$ by inductive definition of δ^*_N

$\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a)$ by inductive definition of δ^*_M

By inductive hypothesis: $Y = \delta^*_N(s, x) = \delta^*_M(s, x)$

Thus $\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a)$ by definition of δ_M.

Therefore,

$\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)$

which is what we need.
Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_M(s', w)$.

Inductive step: $w = xa$ (Note: suffix definition of strings)

$\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)$ by inductive definition of δ^*_N

$\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a)$ by inductive definition of δ^*_M

By inductive hypothesis: $Y = \delta^*_N(s, x) = \delta^*_M(s, x)$

Thus $\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a)$ by definition of δ_M.

Therefore,

$\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)$

which is what we need.
Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_M(s', w) \).

Inductive step: \(w = xa \)
\[
\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)
\]
by inductive definition of \(\delta^*_N \)
\[
\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a)
\]
by inductive definition of \(\delta^*_M \)

By inductive hypothesis: \(Y = \delta^*_N(s, x) = \delta^*_M(s, x) \)

Thus \(\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a) \) by definition of \(\delta_M \).

Therefore,
\[
\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)
\]
which is what we need.
Part II

Closure Properties of Regular Languages
Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFA{s}
- Languages accepted by NFA{s}

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFA{s}
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs
Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by **DFA**s
- Languages accepted by **NFA**s

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or **NFA**s
- complement, union, intersection via **DFA**s
- homomorphism, inverse homomorphism, reverse, \ldots

Different representations allow for flexibility in proofs
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{ w \mid wx \in L, x \in \Sigma^* \}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{ q \in Q \mid s \text{ can reach } q \text{ in } M \}$

$Y = \{ q \in Q \mid q \text{ can reach some state in } A \}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{ w \mid wx \in L, x \in \Sigma^* \}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{ q \in Q \mid s \text{ can reach } q \text{ in } M \}$

$Y = \{ q \in Q \mid q \text{ can reach some state in } A \}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L.

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Exercise: SUFFIX

Let L be a language over Σ.

Definition

$$\text{SUFFIX}(L) = \{ w \mid xw \in L, x \in \Sigma^* \}$$

Prove the following:

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.
Part III

Regex to NFA
Stage 1: Normalizing

2: Normalizing it.
Stage 2: Remove state A
Stage 4: Redrawn without old edges

Diagram:

- **init** connected to **B** with edge labeled **a**.
- **B** connected to **AC** with edge labeled **ε**.
- **C** connected to **B** with edge labeled **b**.
- **C** connected to **B** with edge labeled **a**.
- **C** connected to itself with edge labeled **a + b**.
Stage 4: Removing B

\[\text{init} \rightarrow \begin{array}{c} \text{init} \\ a \end{array} \rightarrow \begin{array}{c} b \\ a + b \end{array} \rightarrow \begin{array}{c} \epsilon \\ a \end{array} \rightarrow \begin{array}{c} \epsilon \\ a + b \end{array} \rightarrow \begin{array}{c} ab^*a \\ \text{AC} \end{array} \]
Stage 5: Redraw

\[
\begin{align*}
&\text{init} \rightarrow \text{C} \rightarrow \text{AC} \\
&ab^*a + b \\
&\epsilon \\
&a + b
\end{align*}
\]
Stage 6: Removing C

\[\text{init} \rightarrow C \xrightarrow{\epsilon} AC \]

\[\text{init} \rightarrow (ab^*a + b)(a + b)^* \epsilon \]

\[ab^*a + b \]

\[a + b \]
Stage 7: Redraw

\[(ab^*a + b)(a + b)^* \]
Thus, this automata is equivalent to the regular expression $(ab^*a + b)(a + b)^*$.