Non-deterministic Finite Automata (NFAs)

Lecture 4
Thursday, September 7, 2017
Part I

NFA Introduction
Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

Questions:

- Is this a “real” machine?
- What does it do?
Non-deterministic Finite State Automata (NFAs)

Differences from DFA
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

Questions:
- Is this a “real” machine?
- What does it do?
Non-deterministic Finite State Automata (NFAs)

Differences from DFA
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ϵ-transitions!

Questions:
- Is this a “real” machine?
- What does it do?
NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)

- From q_ϵ on 1
- From q_ϵ on 0
- From q_0 on ϵ
- From q_ϵ on 01
- From q_{00} on 00
NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{ w \mid N \text{ accepts } w \}$.
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N$ accepts $w\}$.

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.
Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1^*01 accepted?
What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1^*01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: example

Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1^*01 accepted?
What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1*01 accepted?
What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: example

Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1*01 accepted?
What is the language accepted by \(N \)?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: example

Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1*01 accepted?
What is the language accepted by \(N \)?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: example

![NFA diagram]

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1^*01 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Simulating NFA

Example the first

Run it on input $ababa$.
Idea: Keep track of the states where the NFA might be at any given time.
Simulating NFA

Example the first

$t = 0$:

Remaining input: \textit{ababa}.
Simulating NFA

Example the first

$t = 0$:

Remaining input: *ababa*.

$t = 1$:

Remaining input: *baba*.
Simulating NFA

Example the first

$t = 1$:

Remaining input: $baba$.
Simulating NFA

Example the first

$t = 1$:

Remaining input: \textit{baba}.

$t = 2$:

Remaining input: \textit{aba}.
Simulating NFA

Example the first

$t = 2$:

Remaining input: aba.

- A (a,b)
- B (a)
- C (b)
- D (a)
- E (b)
Simulating NFA

Example the first

$t = 2$:

- Remaining input: aba.

$t = 3$:

- Remaining input: ba.
Simulating NFA

Example the first

$t = 3$: $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{a} D \xrightarrow{b} E$

Remaining input: ba.

Sariel Har-Peled (UIUC) CS374 Fall 2017
Simulating NFA

Example the first

\[t = 3: \]

\[t = 4: \]

Remaining input: \(ba \).

Remaining input: \(a \).
Simulating NFA

Example the first

$t = 4$:

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C} \\
\text{D} \\
\text{E}
\end{array}
\]

\[
\begin{array}{c}
a, b \\
a \\
b \\
a \\
b \\
a, b
\end{array}
\]

Remaining input: \(a \).
Simulating NFA

Example the first

$t = 4$:

Remaining input: a

$t = 5$:

Remaining input: ε.
Simulating NFA

Example the first

\[
\begin{align*}
t = 5: & \\
A & \xrightarrow{a,b} B & \xrightarrow{a,b} C & \xrightarrow{a} D & \xrightarrow{b} E
\end{align*}
\]

Remaining input: ε.

Accepts: \textit{ababa}.
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow P(Q)$ is the transition function (here $P(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

$\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.
Reminder: Power set

For a set Q its power set is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is the set of all subsets of Q.

Example

$Q = \{1, 2, 3, 4\}$

$$\mathcal{P}(Q) = \left\{ \{1, 2, 3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1\}, \{2\}, \{3\}, \{4\}, \{\}\right\}$$
Example

- $Q = \{ q_\epsilon, q_0, q_{00}, q_p \}$
- $\Sigma = \{ 0, 1 \}$
- δ
- $s = q_\epsilon$
- $A = \{ q_p \}$
Example

- $Q = \{ q_\epsilon, q_0, q_{00}, q_p \}$
- $\Sigma = \{ 0, 1 \}$
- δ
- $s = q_\epsilon$
- $A = \{ q_p \}$
Example

- $Q = \{ q_\varepsilon, q_0, q_{00}, q_p \}$
- $\Sigma = \{ 0, 1 \}$
- δ
- $s = q_\varepsilon$
- $A = \{ q_p \}$
Example

\[Q = \{ q_\varepsilon, q_0, q_{00}, q_p \} \]

\[\Sigma = \{ 0, 1 \} \]

\[\delta \]

\[s = q_\varepsilon \]

\[A = \{ q_p \} \]
Example

- $Q = \{ q_\varepsilon, q_0, q_{00}, q_p \}$
- $\Sigma = \{ 0, 1 \}$
- $A = \{ q_p \}$

$Q = \{ q_\varepsilon, q_0, q_{00}, q_p \}$
$\Sigma = \{ 0, 1 \}$
$A = \{ q_p \}$
Example

- \(Q = \{ q_\varepsilon, q_0, q_{00}, q_p \} \)
- \(\Sigma = \{ 0, 1 \} \)
- \(\delta \)
- \(s = q_\varepsilon \)
- \(A = \{ q_p \} \)
Example

- $Q = \{q_\varepsilon, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_\varepsilon$
- $A = \{q_p\}$
Example

- $Q = \{q_\varepsilon, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_\varepsilon$
- $A = \{q_p\}$
Example

- $Q = \{q_\epsilon, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_\epsilon$
- $A = \{q_p\}$
Example

Transition function in detail...

\[
\begin{align*}
\delta(q_\varepsilon, \varepsilon) &= \{ q_\varepsilon \} \\
\delta(q_\varepsilon, 0) &= \{ q_\varepsilon, q_0 \} \\
\delta(q_\varepsilon, 1) &= \{ q_\varepsilon \} \\
\delta(q_0, \varepsilon) &= \{ q_0, q_{00} \} \\
\delta(q_0, 0) &= \{ q_{00} \} \\
\delta(q_0, 1) &= \{ \} \\
\delta(q_{00}, \varepsilon) &= \{ q_{00} \} \\
\delta(q_{00}, 0) &= \{ \} \\
\delta(q_{00}, 1) &= \{ q_p \} \\
\delta(q_p, \varepsilon) &= \{ q_p \} \\
\delta(q_p, 0) &= \{ q_p \} \\
\delta(q_p, 1) &= \{ q_p \}
\end{align*}
\]
Extending the transition function to strings

1. **NFA** $\mathcal{N} = (Q, \Sigma, \delta, s, A)$

2. $\delta(q, a)$: set of states that \mathcal{N} can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.

3. Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$

4. $\delta^*(q, w)$: set of states reachable on input w starting in state q.
Extending the transition function to strings

1. **NFA** \(N = (Q, \Sigma, \delta, s, A) \)
2. \(\delta(q, a) \): set of states that \(N \) can go to from \(q \) on reading \(a \in \Sigma \cup \{ \varepsilon \} \).
3. Want transition function \(\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)
4. \(\delta^*(q, w) \): set of states reachable on input \(w \) starting in state \(q \).
Extending the transition function to strings

1. **NFA** $N = (Q, \Sigma, \delta, s, A)$

2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.

3. Want transition function $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$

4. $\delta^*(q, w)$: set of states reachable on input w starting in state q.
Extending the transition function to strings

1. **NFA** \(N = (Q, \Sigma, \delta, s, A) \)
2. \(\delta(q, a) \): set of states that \(N \) can go to from \(q \) on reading \(a \in \Sigma \cup \{\varepsilon\} \).
3. Want transition function \(\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)
4. \(\delta^*(q, w) \): set of states reachable on input \(w \) starting in state \(q \).
Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ-reach(q) is the set of all states that q can reach using only ϵ-transitions.

![NFA Diagram]

An NFA with ϵ-transitions.

1. **NFA Definition:**
 - $N = (Q, \Sigma, \delta, s, A)$
 - ϵ-reach(q)

2. **Diagram:**
 - States: $Q = \{a, b, c, d, e, f, g\}$
 - Alphabet: $\Sigma = \{1, \epsilon\}$
 - Transitions:
 - $\delta(q, \epsilon) = \{\delta(q, \epsilon) : q \in Q\}$
 - $\delta(q, 1) = \{\delta(q, 1) : q \in Q\}$
 - Initial State: s
 - Accepting States: $A = \{f\}$

3. **Example NFA:**
 - The NFA starts as usual in state s.
 - For example, consider the following NFA with ϵ-transitions.

4. **Proofs/oracles:**
 - Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same length: the input string and an oracle string.

5. **Models of Computation Lecture:**
 - Models of Computation Lecture 1: Nondeterministic Automata

6. **Examples:**
 - For example, consider the following NFA with ϵ-transitions.
 - ϵ-transitions using large red arrows; we won’t normally do that.
 - This NFA deliberately has more ϵ-transitions than necessary.

7. **Reach of States:**
 - The ϵ-reach of state f is $\{a, c, d, f, g\}$.
 - The ϵ-reach of state s can reach using only ϵ-transitions.

8. **Proofs:**
 - Finally, we can treat NFAs not as a mechanism for computing proofs/oracles.

9. **Verification:**
 - Equivalently, whenever the NFA faces a ϵ-transition, it destroys the NFA somehow chose a path to an accept state... One slight disadvantage of this models of computations is that if an NFA reads a string that is not in its language, it destroys the NFA somehow.

10. **Further Reading:**
 - This intuition can be formalized as follows. Consider a ϵ-reach of state f...
Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ-reach(q) is the set of all states that q can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \to P(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$-reach($q$)
- if $w = a$ where $a \in \Sigma$
 \[\delta^*(q, a) = \bigcup_{p \in \epsilon$-reach$(q)} \left(\bigcup_{r \in \delta(p, a)} \epsilon$-reach$(r) \right) \]
- if $w = ax$,
 \[\delta^*(q, w) = \bigcup_{p \in \epsilon$-reach$(q)} \left(\bigcup_{r \in \delta(p, a)} \delta^*(r, x) \right) \]
Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon_{reach}(q)$ is the set of all states that q can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon_{reach}(q)$
- if $w = a$ where $a \in \Sigma$

 $\delta^*(q, a) = \bigcup_{p \in \epsilon_{reach}(q)} \left(\bigcup_{r \in \delta(p, a)} \epsilon_{reach}(r) \right)$

- if $w = ax$,

 $\delta^*(q, w) = \bigcup_{p \in \epsilon_{reach}(q)} \left(\bigcup_{r \in \delta(p, a)} \delta^*(r, x) \right)$
Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ-reach(q) is the set of all states that q can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$-reach($q$)
- if $w = a$ where $a \in \Sigma$
 $$\delta^*(q, a) = \bigcup_{p \in \epsilon$-reach($q$)} \left(\bigcup_{r \in \delta(p, a)} \epsilon$-reach($r$) \right)$$
- if $w = ax$,
 $$\delta^*(q, w) = \bigcup_{p \in \epsilon$-reach($q$)} \left(\bigcup_{r \in \delta(p, a)} \delta^*(r, x) \right)$$
Formal definition of language accepted by N

Definition
A string \(w \) is accepted by \(\text{NFA } N \) if \(\delta_N^*(s, w) \cap A \neq \emptyset \).

Definition
The language \(L(N) \) accepted by a \(\text{NFA } N = (Q, \Sigma, \delta, s, A) \) is

\[
\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.
\]

Important: Formal definition of the language of \(\text{NFA } N \) above uses \(\delta^* \) and not \(\delta \). As such, one does not need to include \(\varepsilon \)-transitions closure when specifying \(\delta \), since \(\delta^* \) takes care of that.
Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^* takes care of that.
Example

What is:

- $\delta^*(s, \epsilon)$
- $\delta^*(s, 0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$
What is:

- $\delta^*(s, \epsilon)$
- $\delta^*(s, 0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$
Example

What is:

- $\delta^*(s, \epsilon)$
- $\delta^*(s, 0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$
What is:
- $\delta^*(s, \varepsilon)$
- $\delta^*(s, 0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$
Another definition of computation

Definition

$q \xrightarrow{w}_N p$: State p of NFA N is **reachable** from q on w if there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\varepsilon\}$, for each i, such that:

- $r_0 = q$,
- for each i, $r_{i+1} \in \delta(r_i, x_{i+1})$,
- $r_k = p$, and
- $w = x_1x_2x_3 \cdots x_k$.

Definition

$\delta^* N(q, w) = \left\{ p \in Q \mid q \xrightarrow{w}_N p \right\}$.
Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to “design” programs.
- Fundamental in theory to prove many theorems.
- Very important in practice directly and indirectly.
- Many deep connections to various fields in Computer Science and Mathematics.

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.
Part II

Constructing NFAs
DFAs and NFAs

- Every **DFA** is a **NFA** so **NFAs** are at least as powerful as **DFAs**.
- **NFAs** prove ability to “guess and verify” which simplifies design and reduces number of states
- Easy proofs of some closure properties
Example

Strings that represent decimal numbers.
Strings that represent decimal numbers.
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
Example

$L_k = \{\text{bitstrings that have a 1 \, } k \text{ positions from the end}\}$
A simple transformation

Theorem

For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f
Part III

Closure Properties of NFAs
Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement
Closure under union

Theorem

For any two \(\text{NFA}s \ N_1 \) and \(N_2 \) there is a \(\text{NFA} \) \(N \) such that

\[
L(N) = L(N_1) \cup L(N_2).
\]
Closure under union

Theorem

For any two NFA N_1 *and* N_2 *there is a NFA* N *such that*

$$L(N) = L(N_1) \cup L(N_2).$$
Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

$q_1 \quad N_1 \quad f_1$

$q_2 \quad N_2 \quad f_2$
Closure under concatenation

Theorem

For any two NFA$s N_1 and N_2 there is a NFA$ N such that
$L(N) = L(N_1) \cdot L(N_2)$.

q_1 N_1 f_1

q_2 N_2 f_2
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^$.*
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

![Diagram of NFA with states and transitions]
Part IV

NFA\textbf{s} capture Regular Languages
Regular Languages Recap

<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Regular Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅ regular</td>
<td>∅ denotes ∅</td>
</tr>
<tr>
<td>{ε} regular</td>
<td>ε denotes {ε}</td>
</tr>
<tr>
<td>{a} regular for (a \in \Sigma)</td>
<td>a denote {a}</td>
</tr>
<tr>
<td>(R_1 \cup R_2) regular if both are</td>
<td>(r_1 + r_2) denotes (R_1 \cup R_2)</td>
</tr>
<tr>
<td>(R_1R_2) regular if both are</td>
<td>(r_1r_2) denotes (R_1R_2)</td>
</tr>
<tr>
<td>(R^*) is regular if (R) is</td>
<td>(r^) denote (R^)</td>
</tr>
</tbody>
</table>

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
Theorem

For every regular language L there is an NFA N such that $L = L(N)$.

Proof strategy:

- For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- Induction on length of r
For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Base cases: \emptyset, $\{\varepsilon\}$, $\{a\}$ for $a \in \Sigma$.
For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Inductive cases:
- r_1, r_2 regular expressions and $r = r_1 + r_2$.
 By induction there are NFA N_1, N_2 s.t.
 $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$.
 We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$.
 By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
NFA's and Regular Language

For every regular expression \(r \) show that there is a NFA \(N \) such that \(L(r) = L(N) \)

Induction on length of \(r \)

Inductive cases:

- \(r_1, r_2 \) regular expressions and \(r = r_1 + r_2 \).

 By induction there are NFA's \(N_1, N_2 \) s.t

 \(L(N_1) = L(r_1) \) and \(L(N_2) = L(r_2) \). We have already seen that there is NFA \(N \) s.t \(L(N) = L(N_1) \cup L(N_2) \), hence

 \(L(N) = L(r) \)

- \(r = r_1 \cdot r_2 \). Use closure of NFA languages under concatenation

- \(r = (r_1)^* \). Use closure of NFA languages under Kleene star
For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Inductive cases:

1. r_1, r_2 regular expressions and $r = r_1 + r_2$.
 By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

2. $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

3. $r = (r_1)^*$. Use closure of NFA languages under Kleene star
For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$.
 By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
NFA and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFA N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
NFA\text{s} and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

- Induction on length of r

\textbf{Inductive cases:}

- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFA\text{s} N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
Example

\[(\varepsilon + 0)(1+10)^*\]

\[\varepsilon\]

\[0\]

\[(1+10)^*\]
Example

\((1+10) \)
Example

Final NFA simplified slightly to reduce states