Deterministic Finite Automata (DFAs)

Lecture 3
Tuesday, September 5, 2017
Part I

DFA Introduction
DFA also called Finite State Machines (FSMs)

- The “simplest” model for computers?
- State machines that are common in practice.
 - Vending machines
 - Elevators
 - Digital watches
 - Simple network protocols
- Programs with fixed memory
A simple program

Program to check if a given input string w has odd length

\begin{verbatim}
int $n = 0$
While input is not finished
 read next character c
 $n \leftarrow n + 1$
endWhile
If (n is odd) output YES
Else output NO
\end{verbatim}

\begin{verbatim}
bit $x = 0$
While input is not finished
 read next character c
 $x \leftarrow \text{flip}(x)$
endWhile
If ($x = 1$) output YES
Else output NO
\end{verbatim}
Program to check if a given input string w has odd length

```plaintext
int $n = 0$
While input is not finished
    read next character $c$
    $n \leftarrow n + 1$
endWhile
If ($n$ is odd) output YES
Else output NO

bit $x = 0$
While input is not finished
    read next character $c$
    $x \leftarrow \text{flip}(x)$
endWhile
If ($x = 1$) output YES
Else output NO
```
Another view

- Machine has input written on a *read-only* tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are *accepting*
- Machine *accepts* input string if it is in an accepting state after scanning the last symbol.
Graphical Representation/State Machine

- Directed graph with nodes representing states and edge/arc representing transitions labeled by symbols in Σ
- For each state (vertex) q and symbol $a \in \Sigma$ there is exactly one outgoing edge labeled by a
- Initial/start state has a pointer (or labeled as s, q_0 or “start”)
- Some states with double circles labeled as accepting/final states
Graphical Representation

![DFA Diagram]

- **Where does 001 lead? 10010?**
- **Which strings end up in accepting state?**
- **Can you prove it?**
- **Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.**
Definition 4. A deterministic finite automaton (DFA) is $M = (Q, \mathcal{A}, s, A)$ where
- Q is a finite set whose elements are called states,
- \mathcal{A} is a finite set called the input alphabet,
- $\delta : Q \times \mathcal{A} \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \mathcal{A}, s, A)$, string $w = w_1w_2 \cdots w_k$, where for each i,
- $w_i \in \mathcal{A}$, and
- states $p, q \in Q$, we say $p \xrightarrow{w} M q$ if there is a sequence of states r_0, r_1, \ldots, r_k such that
 - $r_0 = p$,
 - for each i, $(r_i, w_{i+1}) = r_{i+1}$,
 - and $r_k = q$.

Problem 4. Prove that for any state p and string $w \in \mathcal{A}^\ast$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{w} M \quad \begin{cases} p & \text{if } p \xrightarrow{w} M q \text{ for some } q \in Q \text{ and } \mathcal{A}^\ast \end{cases}$

Definition 6. Consider a DFA $M = (Q, \mathcal{A}, s, A)$.
- M accepts string $w \in \mathcal{A}^\ast$ if $M \xrightarrow{w} s$.
- The language accepted/recognized by a DFA M is $L(M) = \{w \in \mathcal{A}^\ast \mid M \xrightarrow{w} s\}$.
- A set $L \subseteq \mathcal{A}^\ast$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5. 1. Which of the following is true?
 - $B \xrightarrow{!} M B$
 - $A \xrightarrow{01} M D$
 - $D \xrightarrow{111} M C$
 - $A \xrightarrow{101} M 2 B$

 2. What is the following?
 - $\xrightarrow{!} M (A, 1011) = q_0$
 - $\xrightarrow{!} M (B, 010) = q_1$
 - $\xrightarrow{!} M (C, 100) = q_2$

 Figure 1: DFA M for problem 5

3. What is $L(M)$?
4. What is the language recognized if we change the initial state to B?
5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.
A deterministic finite automaton (DFA) is $M = (Q, \mathcal{I}, \delta, s, A)$ where

- Q is a finite set whose elements are called states,
- \mathcal{I} is a finite set called the input alphabet,
- $\delta : Q \times \mathcal{I} \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \mathcal{I}, \delta, s, A)$, string $w = w_1w_2\ldots w_k$, where for each i, $w_i \in \mathcal{I}$, and states $p, q \in Q$, w is said to $p \xrightarrow{w} M q$ if there is a sequence of states r_0, r_1, \ldots, r_k such that

- $r_0 = p$,
- for each i, $(r_i, w_{i+1}) = r_{i+1}$,
- and $r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \mathcal{I}^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{w} M q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \mathcal{I}, \delta, s, A)$.

- M accepts string $w \in \mathcal{I}^*$ if $\xrightarrow{w} M q$ for some $q \in A$.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \mathcal{I}^* | \xrightarrow{w} M q \}$ for some $q \in A$.
- A set $L \subseteq \mathcal{I}^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5.

1. Which of the following is true?
 - $B \not\xrightarrow{!} M B$
 - $A \not\xrightarrow{01} M D$
 - $D \not\xrightarrow{111} M C$
 - $A \not\xrightarrow{101} M 2 B$

2. What is the following?
 - $\xrightarrow{2} M (A, 1011) = \ldots$
 - $\xrightarrow{2} M (B, 010) = \ldots$
 - $\xrightarrow{2} M (C, 100) = \ldots$

3. What is $L(M)$?

4. What is the language recognized if we change the initial state to B?

5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?

Graphical Representation

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.
Graphical Representation

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.

![DFA Diagram]

Definition 4. A deterministic finite automaton (DFA) is $M = (Q, \mathcal{A}, \delta, s, A)$ where
- Q is a finite set whose elements are called states,
- \mathcal{A} is a finite set called the input alphabet,
- $\delta : Q \times \mathcal{A} \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \mathcal{A}, \delta, s, A)$, string $w = w_1w_2\cdots w_k$, where for each i, $w_i \in \mathcal{A}$, and states $p, q \in Q$, we say $p \xrightarrow{w} M q$ if there is a sequence of states r_0, r_1, \ldots, r_k such that (a) $r_0 = p$, (b) for each i, $(r_i, w_{i+1}) = r_{i+1}$, and (c) $r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \mathcal{A}^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{w} M q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \mathcal{A}, \delta, s, A)$.
- M accepts string $w \in \mathcal{A}^*$ if the sequence q is such that $p \xrightarrow{w} M q$.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \mathcal{A}^* | M \text{ accepts } w \}$.
- A set $L \subseteq \mathcal{A}^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5. 1. Which of the following is true?
 - $B \xrightarrow{0} M B$
 - $A01 \xrightarrow{1} M D$
 - $D111 \xrightarrow{1} M C$
 - $A101 \xrightarrow{1} M B$

2. What is the following?
 - $\xrightarrow{2} M (A, 1011) = q_0$
 - $\xrightarrow{2} M (B, 010) = q_1$
 - $\xrightarrow{2} M (C, 100) = q_2$

3. What is $L(M)$?
4. What is the language recognized if we change the initial state to B?
5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?
Definition 4. A deterministic finite automaton (DFA) is $M = (Q, \Gamma, \delta, s, A)$ where
- Q is a finite set whose elements are called states,
- Γ is a finite set called the input alphabet,
- $\delta: Q \times \Gamma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \Gamma, \delta, s, A)$, string $w = w_1w_2\cdots w_k$, where for each i, $w_i \in \Gamma$, and states $p, q \in Q$, w is accepted by M if there is a sequence of states r_0, r_1, \ldots, r_k such that:
1. $r_0 = p$,
2. For each i, $(r_i, w_{i+1}) = r_{i+1}$,
3. $r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \Gamma^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{w} M q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \Gamma, \delta, s, A)$.
- M accepts a string $w \in \Gamma^*$ if w is accepted by M.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \Gamma^* | M \text{ accepts } w \}$.

Problem 5.
1. Which of the following is true?
 - $B \xrightarrow{} M B$
 - $A \xrightarrow{01} M D$
 - $D \xrightarrow{111} M C$
 - $A \xrightarrow{101} M B$
2. What is the following?
 - $\xrightarrow{2} M (A, 1011) = q_3$
 - $\xrightarrow{2} M (B, 010) = q_1$
 - $\xrightarrow{2} M (C, 100) = q_2$

Figure 1: DFA M for problem 5.
Definition 4. A deterministic finite automaton (DFA) is $M = (Q, \mathcal{A}, \delta, s, A)$ where

- Q is a finite set whose elements are called states,
- \mathcal{A} is a finite set called the input alphabet,
- $\delta: Q \times \mathcal{A} \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \mathcal{A}, \delta, s, A)$, string $w = w_1w_2 \cdots w_k$, where for each i, $w_i \in \mathcal{A}$, and states $p, q \in Q$, a way $p \xrightarrow{w} M q$ if there is a sequence of states r_0, r_1, \ldots, r_k such that

- $r_0 = p$,
- for each i, $(r_i, w_{i+1}) = r_{i+1}$, and
- $r_k = q$.

Problem 4. Prove that for any state p and string $w \in \mathcal{A}^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{w} M q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \mathcal{A}, \delta, s, A)$.

- M accepts string $w \in \mathcal{A}^*$ iff the unique walk starting at the start state and spelling out w ends in an accepting state.
- The language accepted/recognized by a DFA M is denoted by $L(M)$ and defined as: $L(M) = \{w \mid M \text{ accepts } w\}$.

Problem 5. 1. Which of the following is true?

- $B \xrightarrow{0} M B$
- $A \xrightarrow{101} M D$
- $D \xrightarrow{111} M C$
- $A \xrightarrow{101} M 2B$

2. What is the following?

- $\xrightarrow{} M 2(B, 010) =$
- $\xrightarrow{} M 2(C, 100) =$
- $\xrightarrow{} M 2(A, 1011) =$

3. What is $L(M)$?

4. What is the language recognized if we change the initial state to B?

5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?
"M accepts language L" does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in \(\Sigma^* \setminus L \).

M “recognizes” L is a better term but “accepts” is widely accepted (and recognized) (joke attributed to Lenny Pitt)
“M accepts language L” does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in $\Sigma^* \setminus L$.

M “recognizes” L is a better term but “accepts” is widely accepted (and recognized) (joke attributed to Lenny Pitt)
Formal Tuple Notation

Definition

A determinstic finite automata (DFA) \(M = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function,
- \(s \in Q \) is the start state,
- \(A \subseteq Q \) is the set of accepting/final states.

Common alternate notation: \(q_0 \) for start state, \(F \) for final states.
Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_0 for start state, F for final states.
A deterministic finite automata (DFA) \(M = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function,
- \(s \in Q \) is the start state,
- \(A \subseteq Q \) is the set of accepting/final states.

Common alternate notation: \(q_0 \) for start state, \(F \) for final states.
Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_0 for start state, F for final states.
Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_0 for start state, F for final states.
A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_0 for start state, F for final states.
A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_0 for start state, F for final states.
A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_0 for start state, F for final states.
DFA Notation

\[M = (Q, \Sigma, \delta, s, A) \]

- \(Q \): set of all states
- \(\Sigma \): alphabet
- \(\delta \): transition function
- \(s \): start state
- \(A \): set of all accept states
Example

A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, s, A)$ where:

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Problem 4. Prove that for any state p and string $w \in \Sigma^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{M} (p, w) = q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \Sigma, \delta, s, A)$.

- M accepts string $w \in \Sigma^*$ if $\xrightarrow{M} (s, w) \in A$.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \Sigma^* | M \text{ accepts } w \}$.
- A set $L \subseteq \Sigma^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5.

1. Which of the following is true?
 - $B \xrightarrow{!} M B$
 - $A \xrightarrow{01} M D$
 - $D \xrightarrow{11} M C$
 - $A \xrightarrow{101} M 2 B$

2. What is the following?
 - $\xrightarrow{M} (A, 1011) =$
 - $\xrightarrow{M} (B, 010) =$
 - $\xrightarrow{M} (C, 100) =$

3. What is $L(M)$?
4. What is the language recognized if we change the initial state to B?
5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?

Example DFA

- $Q = \{ q_0, q_1, q_1, q_3 \}$
- $\Sigma = \{ 0, 1 \}$
- δ
- $s = q_0$
- $A = \{ q_0 \}$
Definition 4. A deterministic finite automaton (DFA) is \(M = (Q, \mathcal{V}, \delta, s, A) \) where
- \(Q \) is a finite set whose elements are called states,
- \(\mathcal{V} \) is a finite set called the input alphabet,
- \(\delta : Q \times \mathcal{V} \to Q \) is the transition function,
- \(s \in Q \) is the start state,
- \(A \subseteq Q \) is the set of accepting/final states.

Definition 5. For a DFA \(M = (Q, \mathcal{V}, \delta, s, A) \), string \(w = w_1 w_2 \cdots w_k \), where for each \(i \), \(w_i \in \mathcal{V} \), and states \(p, q \in Q \), \(\delta \) is a way \(\delta(p, w) = q \) if there is a sequence of states \(r_0, r_1, \ldots, r_k \) such that
- \(r_0 = p \),
- for each \(i \), \((r_i, w_{i+1}) = r_{i+1} \), and
- \(r_k = q \).

Problem 4. Prove that for any state \(p \), and string \(w \in \mathcal{V}^* \), there is a unique state \(q \) such that \(\delta(p, w) = q \).

Notation. \(\delta(M)(p, w) = q \) where \(p \xrightarrow{w} M q \).

Definition 6. Consider a DFA \(M = (Q, \mathcal{V}, \delta, s, A) \).
- \(M \) accepts string \(w \in \mathcal{V}^* \) if \(M \xrightarrow{w} A \).
- The language accepted/recognized by a DFA \(M \) is \(L(M) = \{ w \in \mathcal{V}^* | M \xrightarrow{w} A \} \).
- A set \(L \in \mathcal{V}^* \) is said to be accepted/recognized by \(M \) if \(L = L(M) \).

Problem 5.
1. Which of the following is true?
 - \(B \xrightarrow{} M B \)
 - \(A \xrightarrow{01} M D \)
 - \(D \xrightarrow{111} M C \)
 - \(A \xrightarrow{101} M 2B \)
2. What is the following?
 - \(\delta(M)(A, 1011) = \)
 - \(\delta(M)(B, 010) = \)
 - \(\delta(M)(C, 100) = \)
3. What is \(L(M) \)?
4. What is the language recognized if we change the initial state to \(B \)?
5. What is the language recognized if we change the set of final states to be \(\{B\} \) (with initial state \(A \))?

Example

```
\begin{itemize}
  \item Q = \{q_0, q_1, q_3\}
  \item \mathcal{V} = \{0, 1\}
  \item \delta
  \item s = q_0
  \item A = \{q_0\}
\end{itemize}
```
Example

Definition 4. A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, s, A)$ where
- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \Sigma, \delta, s, A)$, string $w = w_1 w_2 \ldots w_k$, where for each i, $w_i \in \Sigma$, and states $p, q \in Q$, we say $p \xrightarrow{w} M q$ if there is a sequence of states r_0, r_1, \ldots, r_k such that
- $(a) r_0 = p$,
- $(b) \text{ for each } i, (r_i, w_{i+1}) = r_{i+1}$, and
- $(c) r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \Sigma^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{w} M (p, w) = q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \Sigma, \delta, s, A)$.
- M accepts string $w \in \Sigma^*$ if M accepts w.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \Sigma^* | M \text{ accepts } w \}$.
- A set $L \subseteq \Sigma^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5.
1. Which of the following is true?
 - $B \xrightarrow{} M B$
 - $A \xrightarrow{01} M D$
 - $D \xrightarrow{111} M C$
 - $A \xrightarrow{101} M 2 B$

2. What is the following?
 - $\xrightarrow{2} M (A, 1011) = \cdot$
 - $\xrightarrow{2} M (B, 010) = \cdot$
 - $\xrightarrow{2} M (C, 100) = \cdot$

3. What is $L(M)$?

4. What is the language recognized if we change the initial state to B?

5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?

Example

![DFA Diagram]

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$
Definition 4. A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, s, A)$ where
- Q is a finite set whose element are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \Sigma, \delta, s, A)$, string $w = w_1 w_2 \cdots w_k$, where for each i, $w_i \in \Sigma$, and states $p, q \in Q$, $w \text{ is accepted by } M$ if there is a sequence of states r_0, r_1, \ldots, r_k such that
(a) $r_0 = p$, (b) for each i, $(r_i, w_{i+1}) = r_{i+1}$, and (c) $r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \Sigma^*$, there is a unique state q such that p is accepted by M if $w \text{ is accepted by } M$.

Notation. $\xrightarrow{M} (p, w) = q$ where p is accepted by M.

Definition 6. Consider a DFA $M = (Q, \Sigma, \delta, s, A)$.
- M accepts string $w \in \Sigma^*$ if $w \text{ is accepted by } M$.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \Sigma^* | M \text{ accepts } w \}$.
- A set $L \subseteq \Sigma^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5. 1. Which of the following is true?
- $B \xrightarrow{!} M B$
- $A 01 \xrightarrow{!} M D$
- $D 111 \xrightarrow{!} M C$
- $A 101 \xrightarrow{!} M 2 B$

2. What is the following?
- $\xrightarrow{M} (A, 1011) = q_0$
- $\xrightarrow{M} (B, 010) = q_1$
- $\xrightarrow{M} (C, 100) = q_2$

3. What is $L(M)$?

4. What is the language recognized if we change the initial state to B?

5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?
Example

A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, s, A)$ where
- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Problem 4.
Prove that for any state p and string $w \in \Sigma^*$, there is a unique state q such that $p \xrightarrow{*} M q$.

Notation.
$\xrightarrow{*} M (p, w) = q$ where $p \xrightarrow{*} M q$.

Definition 6.
Consider a DFA $M = (Q, \Sigma, \delta, s, A)$.
- M accepts string $w \in \Sigma^*$ if $\xrightarrow{*} M (s, w) \in A$.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \Sigma^* \mid \xrightarrow{*} M (s, w) \in A \}$.
- A set $L \subseteq \Sigma^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5.
1. Which of the following is true?
 - $B \xrightarrow{!} M B$
 - $A \xrightarrow{01} M D$
 - $D \xrightarrow{111} M C$
 - $A \xrightarrow{101} M 2 B$

2. What is the following?
 - $\xrightarrow{*} M 2 (A, 1011)$
 - $\xrightarrow{*} M 2 (B, 010)$
 - $\xrightarrow{*} M 2 (C, 100)$

3. What is $L(M)$?

4. What is the language recognized if we change the initial state to B?

5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?
Definition 4. A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, s, A)$ where
• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• $\delta: Q \times \Sigma \to Q$ is the transition function,
• $s \in Q$ is the start state,
• $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \Sigma, \delta, s, A)$, string $w = w_1 w_2 \cdots w_k$, where for each i, $w_i \in \Sigma$, and states $p, q \in Q$, we say $p \xrightarrow{w} M q$ if there is a sequence of states r_0, r_1, \ldots, r_k such that (a) $r_0 = p$, (b) for each i, $(r_i, w_{i+1}) = r_{i+1}$, and (c) $r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \Sigma^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{M} (p, w) = q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \Sigma, \delta, s, A)$.
• M accepts string $w \in \Sigma^*$ if M does w.
• The language accepted/recognized by a DFA M is $L(M) = \{ w \in \Sigma^* : M$ accepts $w \}.$
• A set $L \subseteq \Sigma^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5. 1. Which of the following is true?
• $B \xrightarrow{\epsilon} M B$
• $A \xrightarrow{01} M D$
• $D \xrightarrow{111} M C$
• $A \xrightarrow{101} M 2 B$

2. What is the following?
• $\xrightarrow{M} (A, 1011) = q$
• $\xrightarrow{M} (B, 010) = q$
• $\xrightarrow{M} (C, 100) = q$

3. What is $L(M)$?

4. What is the language recognized if we change the initial state to B?

5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?

Example

\begin{itemize}
 \item $Q = \{q_0, q_1, q_1, q_3\}$
 \item $\Sigma = \{0, 1\}$
 \item δ
 \item $s = q_0$
 \item $A = \{q_0\}$
\end{itemize}
Example

A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, s, A)$ where:

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \Sigma, \delta, s, A)$, string $w = w_1w_2\cdots w_k$, where for each i, $w_i \in \Sigma$, and states $p, q \in Q$, we say $p \xrightarrow{w} M q$ if there is a sequence of states r_0, r_1, \ldots, r_k such that:

1. $r_0 = p$,
2. for each i, $\delta(r_i, w_{i+1}) = r_{i+1}$,
3. $r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \Sigma^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{\Sigma} M (p, w) = q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \Sigma, \delta, s, A)$.

- M accepts the string $w \in \Sigma^*$ if M accepts w: $w \xrightarrow{\Sigma} M q$ for some $q \in A$.
- The language accepted/recognized by a DFA M is $L(M) = \{w \in \Sigma^* | w \xrightarrow{\Sigma} M q \text{ for some } q \in A\}$.
- A set $L \subseteq \Sigma^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5.

1. Which of the following is true?
 - $B \xrightarrow{1} M B$
 - $A \xrightarrow{01} M D$
 - $D \xrightarrow{111} M C$
 - $A \xrightarrow{101} M 2B$

2. What is the following?
 - $\xrightarrow{\Sigma} M 2 (A, 1011) = q_0$
 - $\xrightarrow{\Sigma} M 2 (B, 010) = q_1$
 - $\xrightarrow{\Sigma} M 2 (C, 100) = q_2$

3. What is $L(M)$?
4. What is the language recognized if we change the initial state to B?
5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$
A deterministic finite automaton (DFA) is denoted by \(M = (Q, \Sigma, \delta, s, A) \) where:

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta: Q \times \Sigma \to Q \) is the transition function,
- \(s \in Q \) is the start state,
- \(A \subseteq Q \) is the set of accepting/final states.

Definition 5. For a DFA \(M = (Q, \Sigma, \delta, s, A) \), string \(w = w_1w_2\cdots w_k \), where for each \(i \)

\[
\begin{align*}
\text{states } p, q \in Q, \text{we say } p \xrightarrow{w} M q \text{ if there is a sequence of states } r_0, r_1, \ldots r_k \text{ such that (a) } r_0 = p, (b) \text{ for each } i, (r_i, w_{i+1}) = r_{i+1}, \text{ and (c) } r_k = q.
\end{align*}
\]

Problem 4. Prove that for any state \(p \) and string \(w \in \Sigma^* \), there is a unique state \(q \) such that \(p \xrightarrow{w} M q \).

Notation. \(\xrightarrow{\cdot} M (p, w) = q \) where \(p \xrightarrow{w} M q \).

Definition 6. Consider a DFA \(M = (Q, \Sigma, \delta, s, A) \).

- \(M \) accepts string \(w \in \Sigma^* \) if \(M \) accepts \(\epsilon \) if \(\epsilon \in \Sigma^* \).
- The language accepted/recognized by a DFA \(M \) is \(L(M) = \{ w \in \Sigma^* | M \) accepts \(w \} \).
- A set \(L \subseteq \Sigma^* \) is said to be accepted/recognized by \(M \) if \(L = L(M) \).

Problem 5.

1. Which of the following is true?
 - \(B \xrightarrow{\cdot} M B \)
 - \(A \xrightarrow{01} M D \)
 - \(D \xrightarrow{111} M C \)
 - \(A \xrightarrow{101} M 2B \)

2. What is the following?
 - \(\xrightarrow{\cdot} M 2(A, 1011) = q_0
 - \xrightarrow{\cdot} M 2(B, 010) = q_1
 - \xrightarrow{\cdot} M 2(C, 100) = q_2

3. What is \(L(M) \)?

4. What is the language recognized if we change the initial state to \(B \)?

5. What is the language recognized if we change the set of final states to be \(\{B\} \) (with initial state \(A \))?
Example

A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, s, A)$ where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \Sigma, \delta, s, A)$, string $w = w_1w_2 \cdots w_k$, where for each i, $w_i \in \Sigma$, and states $p, q \in Q$, we say $p \xrightarrow{w} M q$ if there is a sequence of states r_0, r_1, \ldots, r_k such that (a) $r_0 = p$, (b) for each i, $(r_i, w_{i+1}) = r_{i+1}$, and (c) $r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \Sigma^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. \(\xrightarrow{w} M q \) where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \Sigma, \delta, s, A)$.

- M accepts string $w \in \Sigma^*$ if M accepts w.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \Sigma^* | M \text{ accepts } w \}$.
- A set $L \subseteq \Sigma^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5.
1. Which of the following is true?
 - $B \xrightarrow{} M B$
 - $A \xrightarrow{01} M D$
 - $D \xrightarrow{111} M C$
 - $A \xrightarrow{101} M 2 B$

2. What is the following?
 - $\xrightarrow{} M 2 (A, 1011) = q_0$
 - $\xrightarrow{} M 2 (B, 010) = q_1$
 - $\xrightarrow{} M 2 (C, 100) = q_2$

3. What is $L(M)$?

4. What is the language recognized if we change the initial state to B?

5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$
Extending the transition function to strings

Given DFA $M = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is the state that M goes to from q on reading letter a.

Useful to have notation to specify the unique state that M will reach from q on reading string w.

Transition function $\delta^* : Q \times \Sigma^* \rightarrow Q$ defined inductively as follows:

- $\delta^*(q, \epsilon) = q$ if $w = \epsilon$
- $\delta^*(q, w) = \delta^*(\delta(q, a), x)$ if $w = ax$.
Extending the transition function to strings

Given DFA $M = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is the state that M goes to from q on reading letter a.

Useful to have notation to specify the unique state that M will reach from q on reading string w.

Transition function $\delta^* : Q \times \Sigma^* \to Q$ defined inductively as follows:

- $\delta^*(q, w) = q$ if $w = \epsilon$
- $\delta^*(q, w) = \delta^*(\delta(q, a), x)$ if $w = ax$.

Sariel Har-Peled (UIUC)
Definition

The language $L(M)$ accepted by a DFA $M = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \in A \}.$$
Example

What is:

- $\delta^*(q_1, \varepsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- $\delta^*(q_4, 10)$
Definition 4. A deterministic finite automaton (DFA) is $M = (Q, \mathcal{A}, s, A)$ where
- Q is a finite set whose elements are called states,
- \mathcal{A} is a finite set called the input alphabet,
- $\delta: Q \times \mathcal{A} \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition 5. For a DFA $M = (Q, \mathcal{A}, s, A)$, string $w = w_1 w_2 \cdots w_k$, where for each i,
- $w_i \in \mathcal{A}$, and states $p, q \in Q$, if there is a sequence of states r_0, r_1, \ldots, r_k such that
 - $(a) r_0 = p$,
 - (b) for each i, $(r_i, w_{i+1}) = r_{i+1}$, and
 - $(c) r_k = q$.

Problem 4. Prove that for any state p, and string $w \in \mathcal{A}^*$, there is a unique state q such that $p \xrightarrow{w} M q$.

Notation. $\xrightarrow{w} M q$ where $p \xrightarrow{w} M q$.

Definition 6. Consider a DFA $M = (Q, \mathcal{A}, s, A)$.
- M accepts string $w \in \mathcal{A}^*$ if $w \xrightarrow{} M q$ for some $q \in A$.
- The language accepted/recognized by a DFA M is $L(M) = \{ w \in \mathcal{A}^* | w \xrightarrow{} M q \}$.
- A set $L \subseteq \mathcal{A}^*$ is said to be accepted/recognized by M if $L = L(M)$.

Problem 5.
1. Which of the following is true?
 - $B \not\xrightarrow{} M B$
 - $A \xrightarrow{01} M D$
 - $D \xrightarrow{111} M C$
 - $A \xrightarrow{101} M 2B$
2. What is the following?
 - $\xrightarrow{} M 2(A, 1011) = q_0$
 - $\xrightarrow{} M 2(B, 010) = q_1$
 - $\xrightarrow{} M 2(C, 100) = q_2$
3. What is $L(M)$?
4. What is the language recognized if we change the initial state to B?
5. What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?

What is $L(M)$ if start state is changed to q_1?
What is $L(M)$ if final/accept states are set to $\{q_2, q_3\}$ instead of $\{q_0\}$?
Advantages of formal specification

- Necessary for proofs
- Necessary to specify abstractly for class of languages

Exercise: Prove by induction that for any two strings \(u, v \), any state \(q \),
\[\delta^*(q, uv) = \delta^*(\delta^*(q, u), v). \]
Part II

Constructing DFAs
How do we design a DFA M for a given language L? That is $L(M) = L$.

- DFA is a like a program that has fixed amount of memory independent of input size.
- The memory of a DFA is encoded in its states.
- The state/memory must capture enough information from the input seen so far that it is sufficient for the suffix that is yet to be seen (note that DFA cannot go back).
DFA Construction: Example

Assume $\Sigma = \{0, 1\}$

1. $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
2. $L = \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by } 5\}$
3. $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
4. $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
5. $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ or } 010 \text{ as substring}\}$
6. $L = \{w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end}\}$
Assume $\Sigma = \{0, 1\}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by 5}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with 01}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains 001 as substring}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains 001 or 010 as substring}\}$
- $L = \{w \mid w \text{ has a 1 \text{ k positions from the end}}\}$
Assume $\Sigma = \{0, 1\}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by 5}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains 001 as substring}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains 001 or 010 as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end}\}$
DFA Construction: Example

Assume $\Sigma = \{0, 1\}$

- $L = \emptyset, L = \Sigma^*, L = \{\epsilon\}, L = \{0\}$.
- $L = \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by } 5\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ or } 010 \text{ as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end}\}$
DFA Construction: Example

Assume $\Sigma = \{0, 1\}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by } 5\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ or } 010 \text{ as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end}\}$
DFA Construction: Example

Assume $\Sigma = \{0, 1\}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by } 5\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ or } 010 \text{ as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end}\}$
DFA Construction: Example

\[L = \{ \text{Binary numbers congruent to } 0 \mod 5 \} \]

Example: \(1101011 = 107 = 2 \mod 5, \ 1010 = 10 = 0 \mod 5 \)

Key observation:

\(w_0 \mod 5 = a \) implies

\(w_0 \mod 5 = 2a \mod 5 \) and \(w_1 \mod 5 = (2a + 1) \mod 5 \)
DFA Construction: Example

\[L = \{ \text{Binary numbers congruent to } 0 \mod 5 \} \]

Example: \(1101011 = 107 = 2 \mod 5, 1010 = 10 = 0 \mod 5\)

Key observation:
\(w_0 \mod 5 = a\) implies
\(w_0 \mod 5 = 2a \mod 5\) and \(w_1 \mod 5 = (2a + 1) \mod 5\)
Part III

Product Construction and Closure Properties
Part IV

Complement
Question: If M is a DFA, is there a DFA M' such that $L(M') = \Sigma^* \setminus L(M)$? That is, are languages recognized by DFAs closed under complement?
Complement

Example...

Just flip the state of the states!
Complement

Theorem

Languages accepted by **DFA**s are closed under complement.

Proof.

Let $M = (Q, \Sigma, \delta, s, A)$ such that $L = L(M)$.
Let $M' = (Q, \Sigma, \delta, s, Q \setminus A)$. Claim: $L(M') = \overline{L}$. Why?

$\delta^*_M = \delta^*_{M'}$. Thus, for every string w, $\delta^*_M(s, w) = \delta^*_{M'}(s, w)$.

$\delta^*_M(s, w) \in A \Rightarrow \delta^*_{M'}(s, w) \not\in Q \setminus A$.

$\delta^*_M(s, w) \not\in A \Rightarrow \delta^*_{M'}(s, w) \in Q \setminus A$.
Complement

Theorem

Languages accepted by DFA's are closed under complement.

Proof.

Let $M = (Q, \Sigma, \delta, s, A)$ such that $L = L(M)$.
Let $M' = (Q, \Sigma, \delta, s, Q \setminus A)$. Claim: $L(M') = \overline{L}$. Why?

$\delta^*_M = \delta^*_{M'}$. Thus, for every string w, $\delta^*_M(s, w) = \delta^*_{M'}(s, w)$.

$\delta^*_M(s, w) \in A \Rightarrow \delta^*_{M'}(s, w) \not\in Q \setminus A$.

$\delta^*_M(s, w) \not\in A \Rightarrow \delta^*_{M'}(s, w) \in Q \setminus A$.

□
Complement

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M = (Q, \Sigma, \delta, s, A)$ such that $L = L(M)$.

Let $M' = (Q, \Sigma, \delta, s, Q \setminus A)$. Claim: $L(M') = \overline{L}$. Why?

$\delta^*_M = \delta^*_{M'}$. Thus, for every string w, $\delta^*_M(s, w) = \delta^*_{M'}(s, w)$.

$\delta^*_M(s, w) \in A \Rightarrow \delta^*_{M'}(s, w) \notin Q \setminus A$.

$\delta^*_M(s, w) \notin A \Rightarrow \delta^*_{M'}(s, w) \in Q \setminus A$.

□
Part V

Product Construction
Union and Intersection

Question: Are languages accepted by DFA{s} closed under union? That is, given DFA{s} M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$? How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w

- Simulate M_1 on w
- Simulate M_2 on w
- If both accept then $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.

- **Catch:** We want a single DFA M that can only read w once.
- **Solution:** Simulate M_1 and M_2 in parallel by keeping track of states of both machines
Question: Are languages accepted by DFA’s closed under union? That is, given DFA’s M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$? How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w

- Simulate M_1 on w
- Simulate M_2 on w
- If both accept than $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.

- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate M_1 and M_2 in parallel by keeping track of states of both machines.
Question: Are languages accepted by **DFA**s closed under union? That is, given **DFA**s M_1 and M_2 is there a **DFA** that accepts $L(M_1) \cup L(M_2)$? How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w

- Simulate M_1 on w
- Simulate M_2 on w
- If both accept than $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.

Catch: We want a single **DFA** M that can only read w once.

Solution: Simulate M_1 and M_2 in parallel by keeping track of states of both machines.
Union and Intersection

Question: Are languages accepted by DFA's closed under union? That is, given DFA's M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$? How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w

- Simulate M_1 on w
- Simulate M_2 on w
- If both accept than $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.

Catch: We want a single DFA M that can only read w once.

Solution: Simulate M_1 and M_2 in parallel by keeping track of states of both machines
Example

M_1 accepts #0 = odd

M_2 accepts #1 = odd
Example

Cross-product machine

M_1 accepts $#0 = \text{odd}$

M_2 accepts $#1 = \text{odd}$
Example II

Accept all binary strings of length divisible by 3 and 5

Assume all edges are labeled by 0, 1.
Product construction for intersection

\(M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \) and \(M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \)

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \to Q \) where

\[
\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
\]

- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\(L(M) = L(M_1) \cap L(M_2) \).
Product construction for intersection

$M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta : Q \times \Sigma \to Q$ where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]
- $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

Theorem

$L(M) = L(M_1) \cap L(M_2)$.
Product construction for intersection

\(M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \) and \(M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \)

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \to Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \to Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]

- \(A = A_1 \times A_2 = \{ (q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2 \} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \[M = (Q, \Sigma, \delta, s, A) \] where

- \[Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \]
- \[s = (s_1, s_2) \]
- \[\delta : Q \times \Sigma \rightarrow Q \] where

\[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]

- \[A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \]

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \to Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]

- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]

- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Correctness of construction

Lemma

For each string w, $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$.

Exercise: Assuming lemma prove the theorem in previous slide.
Proof of lemma by induction on $|w|$.
Lemma

For each string w, $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$.

Exercise: Assuming lemma prove the theorem in previous slide.

Proof of lemma by induction on $|w|$.
Correctness of construction

Lemma

For each string w, $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$.

Exercise: Assuming lemma prove the theorem in previous slide.
Proof of lemma by induction on $|w|$
Product construction for union

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \] and \[M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \to Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]

- \(A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cup L(M_2). \]
Product construction for union

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]

- \(A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cup L(M_2). \]
Set Difference

Theorem

M_1, M_2 DFAs. There is a DFA M such that $L(M) = L(M_1) \setminus L(M_2)$.

Exercise: Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union
Question: Why are DFAs required to only move right? Can we allow DFA to scan back and forth? **Caveat:** Tape is read-only so only memory is in machine’s state.

- Can define a formal notion of a “2-way” DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs
Question: Why are **DFA**s required to only move right? Can we allow **DFA** to scan back and forth? *Caveat:* Tape is read-only so only memory is in machine’s state.

- Can define a formal notion of a “2-way” **DFA**
- Can show that any language recognized by a 2-way **DFA** can be recognized by a regular (1-way) **DFA**
- Proof is tricky simulation via **NFA**s