Regular Languages and Expressions

Lecture 2
Thursday, August 31, 2017
Part I

Regular Languages
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then $L_1 L_2$ is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.

The * operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The $*$ operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.
The set of **regular languages** over some alphabet \(\Sigma \) is defined inductively as:

1. \(\emptyset \) is a regular language.
2. \(\{\epsilon\} \) is a regular language.
3. \(\{a\} \) is a regular language for each \(a \in \Sigma \). Interpreting \(a \) as string of length 1.
4. If \(L_1, L_2 \) are regular then \(L_1 \cup L_2 \) is regular.
5. If \(L_1, L_2 \) are regular then \(L_1L_2 \) is regular.
6. If \(L \) is regular, then \(L^* = \bigcup_{n \geq 0} L^n \) is regular.

The \(\cdot^* \) operator name is **Kleene star**.

Regular languages are **closed** under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then $L_1 L_2$ is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is \textit{Kleene star}.

Regular languages are \textit{closed} under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages. The set of **regular languages** over some alphabet \(\Sigma \) is defined inductively as:

1. \(\emptyset \) is a regular language.
2. \(\{ \epsilon \} \) is a regular language.
3. \(\{ a \} \) is a regular language for each \(a \in \Sigma \). Interpreting \(a \) as string of length 1.
4. If \(L_1, L_2 \) are regular then \(L_1 \cup L_2 \) is regular.
5. If \(L_1, L_2 \) are regular then \(L_1 L_2 \) is regular.
6. If \(L \) is regular, then \(L^* = \bigcup_{n \geq 0} L^n \) is regular. The \(* \) operator name is **Kleene star**.

Regular languages are **closed** under the **operations** of union, concatenation and Kleene star.
Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: $\{aba\}$ or $\{abbabbab\}$. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \leq 100\}$. Why?
Some simple regular languages

Lemma

If \(w \) is a string then \(L = \{ w \} \) is regular.

Example: \(\{aba\} \) or \(\{abbabbab\} \). Why?

Lemma

Every finite language \(L \) is regular.

Examples: \(L = \{a, abaab, aba\} \). \(L = \{w \mid |w| \leq 100\} \). Why?
More Examples

- \{ w | w is a keyword in Python program \}
- \{ w | w is a valid date of the form mm/dd/yy \}
- \{ w | w describes a valid Roman numeral \}
 \{ I, II, III, IV, V, VI, VII, VIII, IX, X, XI, \ldots \}.
- \{ w | w contains ”CS374” as a substring \}.
Part II

Regular Expressions
Regular Expressions

A way to denote regular languages

- simple **patterns** to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50’s: Stephen Kleene
 who has a star names after him.
Inductive Definition

A regular expression \(r \) over an alphabet \(\Sigma \) is one of the following:

Base cases:
- \(\emptyset \) denotes the language \(\emptyset \)
- \(\epsilon \) denotes the language \(\{ \epsilon \} \).
- \(a \) denote the language \(\{ a \} \).

Inductive cases: If \(r_1 \) and \(r_2 \) are regular expressions denoting languages \(R_1 \) and \(R_2 \) respectively then,
- \((r_1 + r_2) \) denotes the language \(R_1 \cup R_2 \)
- \((r_1 r_2) \) denotes the language \(R_1 R_2 \)
- \((r_1)^* \) denotes the language \(R_1^* \)
Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:
- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,
- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- (r_1r_2) denotes the language R_1R_2
- $(r_1)^*$ denotes the language R_1^*
Regular Languages vs Regular Expressions

<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Regular Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset regular</td>
<td>\emptyset denotes \emptyset</td>
</tr>
<tr>
<td>${\epsilon}$ regular</td>
<td>ϵ denotes ${\epsilon}$</td>
</tr>
<tr>
<td>${a}$ regular for $a \in \Sigma$</td>
<td>a denote ${a}$</td>
</tr>
<tr>
<td>$R_1 \cup R_2$ regular if both are</td>
<td>$r_1 + r_2$ denotes $R_1 \cup R_2$</td>
</tr>
<tr>
<td>R_1R_2 regular if both are</td>
<td>r_1r_2 denotes R_1R_2</td>
</tr>
<tr>
<td>R^* is regular if R is</td>
<td>$r^$ denote $R^$</td>
</tr>
</tbody>
</table>

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.
 Example: $r\ast s + t = ((r\ast)s) + t$
- Omit parenthesis by associativity of each of these operations.
 Example: $rst = (rs)t = r(st)$,
 $r + s + t = r + (s + t) = (r + s) + t$.
- Superscript \ast. For convenience, define $r^+ = rr\ast$. Hence if $L(r) = R$ then $L(r^+) = R^+$.
- Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.
Notation and Parenthesis

- For a regular expression \(r \), \(L(r) \) is the language denoted by \(r \). Multiple regular expressions can denote the same language!

 Example: \((0 + 1)\) and \((1 + 0)\) denote same language \(\{0, 1\}\)

- Two regular expressions \(r_1 \) and \(r_2 \) are **equivalent** if \(L(r_1) = L(r_2) \).

- Omit parenthesis by adopting precedence order: \(\ast \), concatenate, \(+ \).

 Example: \(r\ast s + t = ((r\ast)s) + t \)

- Omit parenthesis by associativity of each of these operations.

 Example: \(rst = (rs)t = r(st) \),
 \(r + s + t = r + (s + t) = (r + s) + t \).

- Superscript \(+ \). For convenience, define \(r^+ = rr^\ast \). Hence if \(L(r) = R \) then \(L(r^+) = R^+ \).

- Other notation: \(r + s \), \(r \cup s \), \(r\mid s \) all denote union. \(rs \) is sometimes written as \(r \cdot s \).
Notation and Parenthesis

- For a regular expression \(r \), \(L(r) \) is the language denoted by \(r \). Multiple regular expressions can denote the same language!
 Example: \((0 + 1)\) and \((1 + 0)\) denote same language \(\{0, 1\}\)
- Two regular expressions \(r_1 \) and \(r_2 \) are **equivalent** if \(L(r_1) = L(r_2) \).
- Omit parenthesis by adopting precedence order: \(*\), concatenate, \(+\).
 Example: \(r^*s + t = ((r^*)s) + t \)
- Omit parenthesis by associativity of each of these operations.
 Example: \(rst = (rs)t = r(st) \),
 \(r + s + t = r + (s + t) = (r + s) + t \).
- **Superscript \(+\).** For convenience, define \(r^+ = rr^* \). Hence if \(L(r) = R \) then \(L(r^+) = R^+ \).
- **Other notation:** \(r + s \), \(r \cup s \), \(r|s \) all denote union. \(rs \) is sometimes written as \(r \cdot s \).
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote the same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are **equivalent** if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$,
$r + s + t = r + (s + t) = (r + s) + t$.

Superscript $+$. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.

Notation and Parenthesis

- For a regular expression \(r \), \(L(r) \) is the language denoted by \(r \). Multiple regular expressions can denote the same language!
 - **Example**: \((0 + 1)\) and \((1 + 0)\) denote same language \(\{0, 1\} \)
- Two regular expressions \(r_1 \) and \(r_2 \) are **equivalent** if \(L(r_1) = L(r_2) \).
- Omit parenthesis by adopting precedence order: \(* \), concatenate, \(+ \).
 - **Example**: \(r^* s + t = ((r^*)s) + t \)
- Omit parenthesis by associativity of each of these operations.
 - **Example**: \(rst = (rs)t = r(st) \),
 \(r + s + t = r + (s + t) = (r + s) + t \).
- **Superscript** \(+ \). For convenience, define \(r^+ = rr^* \). Hence if \(L(r) = R \) then \(L(r^+) = R^+ \).
- **Other notation**: \(r + s \), \(r \cup s \), \(r | s \) all denote union. \(rs \) is sometimes written as \(r \cdot s \).
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.
 Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations.
 Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.
- **Superscript $+$**. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.
- **Other notation:** $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.

Skills

- Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible).
- Given a regular expression r we would like to “understand” $L(r)$ (say by giving an English description).
Skills

- Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible).
- Given a regular expression r we would like to “understand” $L(r)$ (say by giving an English description).
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0*10*10*10*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0*10*10*10*)^*$: strings with number of 1’s divisible by 3
- \emptyset: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0*10*10*10^*)^*$: strings with number of 1’s divisible by 3
- \emptyset: $\{}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\): \{\}
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): \(
- (\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1’s divisible by 3
- \emptyset: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0*10*10*10*)^*$: strings with number of 1’s divisible by 3
- $\emptyset 0$: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1’s divisible by 3
- \emptyset: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with \texttt{001} as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of \texttt{1}'s divisible by \(3\)
- \(\emptyset\): \{"\}
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating \texttt{0}s and \texttt{1}s. Alternatively, no two consecutive \texttt{0}s and no two consecutive \texttt{1}s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive \texttt{0}s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1’s divisible by 3
- \emptyset^*: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)
- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)
- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s
Creating regular expressions

- bitstrings with the pattern \texttt{001} or the pattern \texttt{100} occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$

- bitstrings with an even number of 1’s
 one answer: $0^* + (0^*10^*10^*)^*$

- bitstrings with an odd number of 1’s
 one answer: 0^*1r where r is solution to previous part

- bitstrings that do not contain \texttt{011} as a substring

- Hard: bitstrings with an odd number of 1s \textit{and} an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern \textit{001} or the pattern \textit{100} occurring as a substring

 one answer: \((0 + 1)\ast 001(0 + 1)\ast + (0 + 1)\ast 100(0 + 1)\ast\)

- bitstrings with an even number of \textit{1}'s

 one answer: \(0\ast + (0\ast 10\ast 10\ast)\ast\)

- bitstrings with an odd number of \textit{1}'s

 one answer: \(0\ast 1r\) where \(r\) is solution to previous part

- bitstrings that do \textit{not} contain \textit{011} as a substring

- Hard: bitstrings with an odd number of \textit{1}s \textit{and} an odd number of \textit{0}s.
Creating regular expressions

• bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

• bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

• bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

• bitstrings that do not contain 011 as a substring

• Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- Bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)
- Bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)
- Bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part
- Bitstrings that do not contain 011 as a substring
- Hard: Bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Bit strings with odd number of 0s and 1s

The regular expression is

\[(00 + 11)^*(01 + 10)\]

\[\left(00 + 11 + (01 + 10)(00 + 11)^*(01 + 10)\right)^*\]

(Solved using techniques to be presented in the following lectures...)
Regular expression identities

- \(r^* r^* = r^* \) meaning for any regular expression \(r \),
 \(L(r^* r^*) = L(r^*) \)
- \((r^*)^* = r^*\)
- \(rr^* = r^* r\)
- \((rs)^* r = r(sr)^*\)
- \((r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots\)

Question: How does one prove an identity?

By induction. On what? Length of \(r \) since \(r \) is a string obtained from specific inductive rules.
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r,
 $L(r^* r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.
Regular expression identities

- \(r^* r^* = r^* \) meaning for any regular expression \(r \),
 \[L(r^* r^*) = L(r^*) \]
- \((r^*)^* = r^* \)
- \(rr^* = r^* r \)
- \((rs)^* r = r(sr)^* \)
- \((r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots \)

Question: How does one prove an identity?

By induction. On what? Length of \(r \) since \(r \) is a string obtained from specific inductive rules.
Regular expression identities

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r + s)^* = (r^*s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive rules.
A non-regular language and other closure properties

Consider $L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$.

Theorem

L is not a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is \bar{R}_1 (complement of R_1) regular?
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\(L \) is **not** a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\bar{R}_1 \) (complement of \(R_1 \)) regular?
Consider $L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$.

Theorem

L is **not** a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is $\overline{R_1}$ (complement of R_1) regular?
Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\(L \) is **not** a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\tilde{R}_1 \) (complement of \(R_1 \)) regular?