Describe recursive backtracking algorithms for the following problems. *Don’t worry about running times.*

1. **Given an array** \(A[1..n] \) **of integers, compute the length of a longest increasing subsequence.**

Solution:

[#1 of ∞] Add a sentinel value \(A[0] = -\infty \). Let \(LIS(i, j) \) denote the length of the longest increasing subsequence of \(A[j..n] \) where every element is larger than \(A[i] \). This function obeys the following recurrence:

\[
LIS(i, j) = \begin{cases}
0 & \text{if } j > n \\
LIS(i, j + 1) & \text{if } j \leq n \text{ and } A[i] \geq A[j] \\
\max\{LIS(i, j + 1), 1 + LIS(j, j + 1)\} & \text{otherwise}
\end{cases}
\]

We need to compute \(LIS(0, 1) \).

Solution:

[#2 of ∞] Add a sentinel value \(A[n+1] = -\infty \). Let \(LIS(i, j) \) denote the length of the longest increasing subsequence of \(A[1..j] \) where every element is smaller than \(A[j] \). This function obeys the following recurrence:

\[
LIS(i, j) = \begin{cases}
0 & \text{if } i < 1 \\
LIS(i - 1, j) & \text{if } i \geq 1 \text{ and } A[i] \geq A[j] \\
\max\{LIS(i - 1, j), 1 + LIS(i - 1, i)\} & \text{otherwise}
\end{cases}
\]

We need to compute \(LIS(n, n+1) \).

Solution:

[#3 of ∞] Let \(LIS(i) \) denote the length of the longest increasing subsequence of \(A[i..n] \) that begins with \(A[i] \). This function obeys the following recurrence:

\[
LIS(i) = \begin{cases}
1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\
1 + \max\{LIS(j)\} & \text{if } j > i \text{ and } A[j] > A[i] \text{ and } A[j] \leq A[i] \text{ for all } j > i \\
\end{cases}
\]

(The first case is actually redundant if we define \(\max\emptyset = 0 \).) We need to compute \(\max_i LIS(i) \).

Solution:

[#4 of ∞] Add a sentinel value \(A[0] = -\infty \). Let \(LIS(i) \) denote the length of the longest increasing subsequence of \(A[i..n] \) that begins with \(A[i] \). This function obeys the following recurrence:

\[
LIS(i) = \begin{cases}
1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\
1 + \max\{LIS(j)\} & \text{if } j > i \text{ and } A[j] > A[i] \text{ and } A[j] \leq A[i] \text{ for all } j > i \\
\end{cases}
\]

(The first case is actually redundant if we define \(\max\emptyset = 0 \).) We need to compute \(LIS(0) - 1 \); the \(-1\) removes the sentinel \(-\infty\) from the start of the subsequence.
Solution:
[#5 of ∞] Add sentinel values $A[0] = -\infty$ and $A[n+1] = \infty$. Let $LIS(j)$ denote the length of the longest increasing subsequence of $A[1 .. j]$ that ends with $A[j]$. This function obeys the following recurrence:

$$LIS(j) = \begin{cases}
1 & \text{if } j = 0 \\
1 + \max \{LIS(i)\} & \text{i < j and } A[i] < A[j] \\
\text{otherwise} &
\end{cases}$$

We need to compute $LIS(n+1) - 2$; the -2 removes the sentinels $-\infty$ and ∞ from the subsequence.

2 Given an array $A[1 .. n]$ of integers, compute the length of a longest decreasing subsequence.

Solution:
[one of many] Add a sentinel value $A[0] = \infty$. Let $LDS(i, j)$ denote the length of the longest decreasing subsequence of $A[j .. n]$ where every element is smaller than $A[i]$. This function obeys the following recurrence:

$$LDS(i, j) = \begin{cases}
0 & \text{if } j > n \\
LDS(i, j + 1) & \text{if } j \leq n \text{ and } A[i] \leq A[j] \\
\max \{LDS(i, j + 1), 1 + LIS(j, j + 1)\} & \text{otherwise}
\end{cases}$$

We need to compute $LDS(0, 1)$.

Solution:
[clever] Multiply every element of A by -1, and then compute the length of the longest increasing subsequence using the algorithm from problem 1.

3 Given an array $A[1 .. n]$ of integers, compute the length of a longest alternating subsequence.

Solution:
[one of many] We define two functions:

- Let $LAS^+(i, j)$ denote the length of the longest alternating subsequence of $A[j .. n]$ whose first element (if any) is larger than $A[i]$ and whose second element (if any) is smaller than its first.
- Let $LAS^-(i, j)$ denote the length of the longest alternating subsequence of $A[j .. n]$ whose first element (if any) is smaller than $A[i]$ and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

$$LAS^+(i, j) = \begin{cases}
0 & \text{if } j > n \\
LIS^+(i, j + 1) & \text{if } j \leq n \text{ and } A[j] \leq A[i] \\
\max \{LIS^+(i, j + 1), 1 + LIS^-(j, j + 1)\} & \text{otherwise}
\end{cases}$$

$$LAS^-(i, j) = \begin{cases}
0 & \text{if } j > n \\
LIS^-(i, j + 1) & \text{if } j \leq n \text{ and } A[i] \geq A[j] \\
\max \{LIS^-(i, j + 1), 1 + LIS^+(j, j + 1)\} & \text{otherwise}
\end{cases}$$

To simplify computation, we consider two different sentinel values $A[0]$. First we set $A[0] = -\infty$ and let $\ell^+ = LAS^+(0, 1)$. Then we set $A[0] = +\infty$ and let $\ell^- = LAS^-(0, 1)$. Finally, the length of the longest alternating subsequence of A is $\max \{\ell^+, \ell^-\}$.
Solution:

[one of many] We define two functions:

- Let $\text{LAS}^+(i)$ denote the length of the longest alternating subsequence of $A[i \ldots n]$ that starts with $A[i]$ and whose second element (if any) is larger than $A[i]$.
- Let $\text{LAS}^-(i)$ denote the length of the longest alternating subsequence of $A[i \ldots n]$ that starts with $A[i]$ and whose second element (if any) is smaller than $A[i]$.

These two functions satisfy the following mutual recurrences:

\[
\text{LAS}^+(i) = \begin{cases}
1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\
1 + \max \{ \text{LAS}^-(j) \} & \text{if } j > i \text{ and } A[j] > A[i] \\
0 & \text{otherwise}
\end{cases}
\]

\[
\text{LAS}^-(i) = \begin{cases}
1 & \text{if } A[j] \geq A[i] \text{ for all } j > i \\
1 + \max \{ \text{LAS}^+(j) \} & \text{if } j > i \text{ and } A[j] < A[i] \\
0 & \text{otherwise}
\end{cases}
\]

We need to compute $\max_i \max \{ \text{LAS}^+(i), \text{LAS}^-(i) \}$.

To think about later:

1.

Given an array $A[1..n]$ of integers, compute the length of a longest convex subsequence of A.

Solution:

Let $LCS(i, j)$ denote the length of the longest convex subsequence of $A[i \ldots n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

\[
LCS(i, j) = 1 + \max \{ LCS(j, k) \} \quad j < k \leq n \quad \text{and} \quad A[i] + A[k] > 2A[j]
\]

Here we define $\max \emptyset = 0$; this gives us a working base case. The length of the longest convex subsequence is $\max_{1 \leq i < j \leq n} LCS(i, j)$.

Solution:

[with sentinels] Assume without loss of generality that $A[i] \geq 0$ for all i. (Otherwise, we can add $|n|$ to each $A[i]$, where m is the smallest element of $A[1 \ldots n]$.) Add two sentinel values $A[0] = 2M + 1$ and $A[-1] = 4M + 3$, where M is the largest element of $A[1 \ldots n]$.

Let $LCS(i, j)$ denote the length of the longest convex subsequence of $A[i \ldots n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

\[
LCS(i, j) = 1 + \max \{ LCS(j, k) \} \quad j < k \leq n \quad \text{and} \quad A[i] + A[k] > 2A[j]
\]

Here we define $\max \emptyset = 0$; this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of $A[1 \ldots n]$ is $LCS(-1, 0) - 2$.

On the other hand, removing $A[-1]$ and $A[0]$ from any convex subsequence of $A[-1 \ldots n]$ laves a convex subsequence of $A[1 \ldots n]$. So the longest subsequence of $A[1 \ldots n]$ has length at least $LCS(-1, 0) - 2$. ■
Given an array \(A[1..n] \), compute the length of a longest palindrome subsequence of \(A \).

Solution:

[naive] Let \(LPS(i, j) \) denote the length of the longest palindrome subsequence of \(A[i..j] \). This function obeys the following recurrence:

\[
LPS(i, j) = \begin{cases}
 0 & \text{if } i > j \\
 1 & \text{if } i = j \\
 \max \left\{ LPS(i + 1, j), \ LPS(i, j - 1) \right\} & \text{if } i < j \text{ and } A[i] \neq A[j] \\
 2 + LPS(i + 1, j - 1) & \text{otherwise}
\end{cases}
\]

We need to compute \(LPS(1, n) \).

Solution:

[with greedy optimization] Let \(LPS(i, j) \) denote the length of the longest palindrome subsequence of \(A[i..j] \). Before stating a recurrence for this function, we make the following useful observation.\(^1\)

Claim 0.1. If \(i < j \) and \(A[i] = A[j] \), then \(LPS(i, j) = 2 + LPS(i + 1, j - 1) \).

Proof: Suppose \(i < j \) and \(A[i] = A[j] \). Fix an arbitrary longest palindrome subsequence \(S \) of \(A[i..j] \). There are four cases to consider.

- If \(S \) uses neither \(A[i] \) nor \(A[j] \), then \(A[i] \bullet S \bullet A[j] \) is a palindrome subsequence of \(A[i..j] \) that is longer than \(S \), which is impossible.
- Suppose \(S \) uses \(A[i] \) but not \(A[j] \). Let \(A[k] \) be the last element of \(S \). If \(k = i \), then \(A[i] \bullet A[j] \) is a palindrome subsequence of \(A[i..j] \) that is longer than \(S \), which is impossible. Otherwise, replacing \(A[k] \) with \(A[j] \) gives us a palindrome subsequence of \(A[i..j] \) with the same length as \(S \) that uses both \(A[i] \) and \(A[j] \).
- Suppose \(S \) uses \(A[j] \) but not \(A[i] \). Let \(A[h] \) be the first element of \(S \). If \(h = j \), then \(A[i] \bullet A[j] \) is a palindrome subsequence of \(A[i..j] \) that is longer than \(S \), which is impossible. Otherwise, replacing \(A[h] \) with \(A[i] \) gives us a palindrome subsequence of \(A[i..j] \) with the same length as \(S \) that uses both \(A[i] \) and \(A[j] \).
- Finally, \(S \) might include both \(A[i] \) and \(A[j] \).

In all cases, we find either a contradiction or a longest palindrome subsequence of \(A[i..j] \) that uses both \(A[i] \) and \(A[j] \).

Claim 1 implies that the function \(LPS \) satisfies the following recurrence:

\[
LPS(i, j) = \begin{cases}
 0 & \text{if } i > j \\
 1 & \text{if } i = j \\
 \max \left\{ LPS(i + 1, j), \ LPS(i, j - 1) \right\} & \text{if } i < j \text{ and } A[i] \neq A[j] \\
 2 + LPS(i + 1, j - 1) & \text{otherwise}
\end{cases}
\]

We need to compute \(LPS(1, n) \).