In lecture, Alex described an algorithm of Karatsuba that multiplies two n-digit integers using $O(n^{\lg 3})$ single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an n-digit number and an m-digit number, where $m < n$, in $O(m^{\lg 3} - 1) n$ time.

Solution:
Split the larger number into $\lceil n/m \rceil$ chunks, each with m digits. Multiply the smaller number by each chunk in $O(m^{\lg 3})$ time using Karatsuba’s algorithm, and then add the resulting partial products with appropriate shifts.

```plaintext
SkewMultiply(x[0 \ldots m-1], y[0 \ldots n-1]):
    prod ← 0
    offset ← 0
    for i ← 0 to $\lceil n/m \rceil$ - 1
        chunk ← y[i \cdot m \ldots (i+1) \cdot m - 1]
        prod ← prod + Multiply(x, chunk) \cdot 10^{i \cdot m}
    return prod
```

Each call to `Multiply` requires $O(m^{\lg 3})$ time, and all other work within a single iteration of the main loop requires $O(m)$ time. Thus, the overall running time of the algorithm is $O(1) + \lceil n/m \rceil \cdot O(m^{\lg 3}) = O(m^{\lg 3} - 1)n$ as required.

This is the standard method for multiplying a large integer by a single digit integer written in base 10^m, but with each single-digit multiplication implemented using Karatsuba’s algorithm.

2. Describe an algorithm to compute the decimal representation of 2^n in $O(n^{\lg 3})$ time. (The standard algorithm that computes one digit at a time requires $\Theta(n^2)$ time.)

Solution:
We compute 2^n via repeated squaring, implementing the following recurrence:

$$2^n = \begin{cases}
1 & \text{if } n = 0 \\
(2^{n/2})^2 & \text{if } n > 0 \text{ is even} \\
2 \cdot (2^{\lfloor n/2 \rfloor})^2 & \text{if } n \text{ is odd}
\end{cases}$$

We use Karatsuba’s algorithm to implement decimal multiplication for each square.

```plaintext
TwoToThe(n):
    if n = 0
        return 1
    m ← \lfloor n/2 \rfloor
    z ← TwoToThe(m) // recurse!
    z ← Multiply(z, z) // Karatsuba
    if n is odd
        z ← Add(z, z)
    return z
```
Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(n^{\lg 3})$ time. (Hint: Let $x = a \cdot 2^{n/2} + b$. Watch out for an extra log factor in the running time.)

Solution:

Following the hint, we break the input x into two smaller numbers $x = a \cdot 2^{n/2} + b$; recursively convert a and b into decimal; convert $2^{n/2}$ into decimal using the solution to problem 2; multiply a and $2^{n/2}$ using Karatsuba’s algorithm; and finally add the product to b to get the final result.

```plaintext
Decimal(x[0...n-1]):
if n < 100
    use brute force
m ← [n/2]
a ← x[m...n-1]
b ← x[0...m-1]
return Add(Multiply(Decimal(a), TwoToThe(m)), Decimal(b))
```

The running time of this algorithm satisfies the recurrence $T(n) = 2T(n/2) + O(n^{\lg 3})$; the $O(n^{\lg 3})$ term includes the running times of both Multiply and TwoToThe (as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with 2^i nodes at recursion depth i. Each recursive call at depth i converts an $n/2^i$-bit binary number to decimal; the non-recursive work at the corresponding node of the recursion tree is $O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i)$. Thus, the total work at depth i is $2^i \cdot O(n^{\lg 3}/3^i) = O(n^{\lg 3}/(3/2)^i)$. The level sums define a descending geometric series, which is dominated by its largest term $O(n^{\lg 3})$.

Notice that if we had converted $2^{n/2}$ to decimal recursively instead of calling TwoToThe, the recurrence would have been $T(n) = 3T(n/2) + O(n^{\lg 3})$. Every level of this recursion tree has the same sum, so the overall running time would be $O(n^{\lg 3} \log n)$.

Think about later:

Suppose we can multiply two n-digit numbers in $O(M(n))$ time. Describe an algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(M(n) \log n)$ time.

Solution:

We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of Karatsuba’s algorithm. Let $T_2(n)$ and $T_3(n)$ denote the running times of TwoToThe and Decimal, respectively. We need to solve the recurrences

$$T_2(n) = T_2(n/2) + O(M(n)) \quad \text{and} \quad T_3(n) = 2T_3(n/2) + T_2(n) + O(M(n)).$$

But how can we do that when we don’t know $M(n)$?
For the moment, suppose $M(n) = O(n^c)$ for some constant $c > 0$. Since any algorithm to multiply two n-digit numbers must read all n digits, we have $M(n) = \Omega(n)$, and therefore $c \geq 1$. On the other hand, the grade-school lattice algorithm implies $M(n) = O(n^2)$, so we can safely assume $c \leq 2$. With this assumption, the recursion tree method implies

$$ T_2(n) = T_2(n/2) + O(n^c) \implies T_2(n) = O(n^c) $$

$$ T_3(n) = 2T_3(n/2) + O(n^c) \implies T_3(n) = \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases} $$

So in this case, we have $T_3(n) = O(M(n) \log n)$ as required.

In reality, $M(n)$ may not be a simple polynomial, but we can effectively ignore any sub-polynomial noise using the following trick. Suppose we can write $M(n) = n^c \cdot \mu(n)$ for some constant c and some arbitrary non-decreasing function $\mu(n)$.

To solve the recurrence $T_2(n) = T_2(n/2) + O(M(n))$, we define a new function $\tilde{T}_2(n) = T_2(n)/\mu(n)$. Then we have

$$ \tilde{T}_2(n) = \frac{T_2(n/2)}{\mu(n)} + \frac{O(M(n))}{\mu(n)} \leq \frac{T_2(n/2)}{\mu(n/2)} + \frac{O(M(n))}{\mu(n)} = \tilde{T}_2(n/2) + O(n^c). $$

Here we used the inequality $\mu(n) \geq \mu(n/2)$; this the only fact about μ that we actually need. The recursion tree method implies $\tilde{T}_2(n) \leq O(n^c)$, and therefore $T_2(n) \leq O(n^c) \cdot \mu(n) = O(M(n))$.

Similarly, to solve the recurrence $T_3(n) = 2T_3(n/2) + O(M(n))$, we define $\tilde{T}_3(n) = T_3(n)/\mu(n)$, which gives us the recurrence $\tilde{T}_3(n) \leq 2\tilde{T}_3(n/2) + O(n^c)$. The recursion tree method implies

$$ \tilde{T}_3(n) \leq \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases} $$

In both cases, we have $\tilde{T}_3(n) = O(n^c \log n)$, which implies that $T_3(n) = O(M(n) \log n)$.

3