Prove that each of the following languages is not regular.

1. \(\{ 0^{2n} \mid n \geq 0 \} \)

Solution:

Let \(F = L = \{ 0^{2n} \mid n \geq 0 \} \).

Let \(x \) and \(y \) be arbitrary elements of \(F \).

Then \(x = 0^x \) and \(y = 0^y \) for some non-negative integers \(x \) and \(y \).

Let \(z = 0^{2^y} \).

Then \(xz = 0^{2^x}0^{2^y} = 0^{2^x+2^y} \in L \).

And \(yz = 0^{2^x}0^{2^y} = 0^{2^x+2^y} \not \in L \), because \(i \neq j \)

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

2. \(\{ 0^{2n}1^n \mid n \geq 0 \} \)

Solution:

Let \(F \) be the language \(0^* \).

Let \(x \) and \(y \) be arbitrary strings in \(F \).

Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).

Let \(z = 0^i \).

Then \(xz = 0^{2^i}1^i \in L \).

And \(yz = 0^{i+j}1^i \not \in L \), because \(i+j \neq 2i \).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

3. \(\{ 0^n1^n \mid m \neq 2n \} \)

Solution:

Let \(F \) be the language \(0^* \).

Let \(x \) and \(y \) be arbitrary strings in \(F \).

Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).

Let \(z = 0^i \).

Then \(xz = 0^{2i}1^i \not \in L \).

And \(yz = 0^{i+j}1^i \in L \), because \(i+j \neq 2i \).
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution:

For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix 1^i, because $0^{2i+1} \notin L$ but $0^{2j+1} \in L$. Thus, the language $(00)^*$ is an infinite fooling set for L.

4. Strings over $\{0, 1\}$ where the number of 0s is exactly twice the number of 1s.

Solution:

Let F be the language 0^*. Let x and y be arbitrary strings in F.
Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.
Let $z = 0^i 1^j$.
Then $xz = 0^{2i} 1^j \in L$.
And $yz = 0^{i+j} 1^j \notin L$, because $i+j \neq 2i$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

5. Strings of properly nested parentheses $()$, brackets $[]$, and braces $\{}\{}$. For example, the string $([[]])$ is in this language, but the string $([[]])$ is not, because the left and right delimiters don’t match.

Solution:

Let F be the language *. Let x and y be arbitrary strings in F.
Then $x = i^i$ and $y = j^j$ for some non-negative integers $i \neq j$.
Let $z = j^j$.
Then $xz = i^i j^j \in L$.
And $yz = i^i j^j \notin L$, because $i \neq j$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution:

For any non-negative integers $i \neq j$, the strings i^i and j^j are distinguished by the suffix j^j, because $i^i j^j \in L$ but $i^j j^i \notin L$. Thus, the language * is an infinite fooling set.
6. Strings of the form \(w_1 \# w_2 \# \cdots \# w_n \) for some \(n \geq 2 \), where each substring \(w_i \) is a string in \(\{0, 1\}^* \), and some pair of substrings \(w_i \) and \(w_j \) are equal.

Solution:

Let \(F \) be the language \(0^* \).

Let \(x \) and \(y \) be arbitrary strings in \(F \).

Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).

Let \(z = \#0^i \).

Then \(xz = 0^i \#0^i \in L \).

And \(yz = 0^j \#0^i \notin L \), because \(i \neq j \).

Thus, \(F \) is a fooling set for \(L \). Because \(F \) is infinite, \(L \) cannot be regular.

Solution:

For any non-negative integers \(i \neq j \), the strings \(0^i \) and \(0^j \) are distinguished by the suffix \(\#0^i \), because \(0^i \#0^i \in L \) but \(0^j \#0^i \notin L \). Thus, the language \(0^* \) is an infinite fooling set.

Extra problems

7. \(\{0^{n^2} \mid n \geq 0\} \)

Solution:

Let \(x \) and \(y \) be distinct arbitrary strings in \(L \).

Without loss of generality, \(x = 0^i^2 \) and \(y = 0^j^2 \) for some \(i > j \geq 0 \).

Let \(z = 0^{2i+1} \).

Then \(xz = 0^{i^2+2i+1} = 0^{(i+1)^2} \in L \).

On the other hand, \(yz = 0^{i^2+2j+1} \notin L \), because \(i^2 < i^2 + 2j + 1 < (i+1)^2 \).

Thus, \(z \) distinguishes \(x \) and \(y \).

We conclude that \(L \) is an infinite fooling set for \(L \), so \(L \) cannot be regular.

Solution:

Let \(x \) and \(y \) be distinct arbitrary strings in \(0^* \).

Without loss of generality, \(x = 0^i \) and \(y = 0^j \) for some \(i > j \geq 0 \).

Let \(z = 0^{i^2+i+1} \).

Then \(xz = 0^{i^2+2i+1} = 0^{(i+1)^2} \in L \).

On the other hand, \(yz = 0^{i^2+i+j+1} \notin L \), because \(i^2 < i^2 + i + j + 1 < (i+1)^2 \).

Thus, \(z \) distinguishes \(x \) and \(y \).

We conclude that \(0^* \) is an infinite fooling set for \(L \), so \(L \) cannot be regular.

Solution:

Let \(x \) and \(y \) be distinct arbitrary strings in \(0000^* \).

Without loss of generality, \(x = 0^i \) and \(y = 0^j \) for some \(i > j \geq 3 \).

Let \(z = 0^{i^2-i} \).

Then \(xz = 0^i^2 \in L \).

On the other hand, \(yz = 0^{i^2-i+j} \notin L \), because \((i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2 \).
(The first inequalities requires \(i \geq 2 \), and the second \(j \geq 1 \).) Thus, \(z \) distinguishes \(x \) and \(y \).

We conclude that 0000* is an infinite fooling set for \(L \), so \(L \) cannot be regular.

8. \(\{ w \in (0 + 1)^* \mid w \) is the binary representation of a perfect square\}

Solution:

We design our fooling set around numbers of the form \((2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = 10^{k-2}10^k1 \in L\), for any integer \(k \geq 2 \). The argument is somewhat simpler if we further restrict \(k \) to be even.

Let \(F = 1(00)^*1 \), and let \(x \) and \(y \) be arbitrary strings in \(F \).

Then \(x = 10^{2i-1} \) and \(y = 10^{2j-1} \), for some positive integers \(i \neq j \).

Without loss of generality, assume \(i < j \). (Otherwise, swap \(x \) and \(y \).)

Let \(z = 0^{2i}1 \).

Then \(xz = 10^{2i-2}10^{2i}1 \) is the binary representation of \(2^{2i} + 2^i + 1 = (2^i + 1)^2 \), and therefore \(xz \in L \).

On the other hand, \(yz = 10^{2j-2}10^{2j}1 \) is the binary representation of \(2^{2j} + 2^{i+1} + 1 \). Simple algebra gives us the inequalities

\[
(2^{i+j})^2 = 2^{2i+2j} \\
< 2^{2i+2j} + 2^{2i+1} + 1 \\
< 2^{2(i+j)} + 2^{i+j+1} + 1 \\
= (2^{i+j} + 1)^2.
\]

So \(2^{2i+2j} + 2^{2i+1} + 1 \) lies between two consecutive perfect squares, and thus is not a perfect square, which implies that \(yz \notin L \).

We conclude that \(F \) is a fooling set for \(L \). Because \(F \) is infinite, \(L \) cannot be regular.