A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its elements are contiguous in the original sequence. For example:

- \texttt{SUBSEQUENCE}, \texttt{UBSEQU}, and the empty string \texttt{ε} are all substrings (and therefore subsequences) of the string \texttt{SUBSEQUENCE};
- \texttt{SBSQNC}, \texttt{SQUEE}, and \texttt{EEE} are all subsequences of \texttt{SUBSEQUENCE} but not substrings;
- \texttt{QUEUE}, \texttt{EQUUS}, and \texttt{DIMAGGIO} are not subsequences (and therefore not substrings) of \texttt{SUBSEQUENCE}.

Describe recursive backtracking algorithms for the following problems. Don’t worry about running times.

1. Given an array \(A[1..n] \) of integers, compute the length of a longest increasing subsequence. A sequence \(B[1..\ell] \) is increasing if \(B[i] > B[i-1] \) for every index \(i \geq 2 \).

 For example, given the array

 \[
 \langle 3, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
 \]

 your algorithm should return the integer 6, because \(\langle 1, 4, 5, 6, 8, 9 \rangle \) is a longest increasing subsequence (one of many).

2. Given an array \(A[1..n] \) of integers, compute the length of a longest decreasing subsequence. A sequence \(B[1..\ell] \) is decreasing if \(B[i] < B[i-1] \) for every index \(i \geq 2 \).

 For example, given the array

 \[
 \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
 \]

 your algorithm should return the integer 5, because \(\langle 9, 6, 5, 4, 2 \rangle \) is a longest decreasing subsequence (one of many).

3. Given an array \(A[1..n] \) of integers, compute the length of a longest alternating subsequence. A sequence \(B[1..\ell] \) is alternating if \(B[i] < B[i-1] \) for every even index \(i \geq 2 \), and \(B[i] > B[i-1] \) for every odd index \(i \geq 3 \).

 For example, given the array

 \[
 \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
 \]

 your algorithm should return the integer 17, because \(\langle 3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9, 3, 8, 4, 6, 2, 7 \rangle \) is a longest alternating subsequence (one of many).

To think about later:

 For example, given the array

 \[
 \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
 \]

 your algorithm should return the integer 6, because \(\langle 3, 1, 1, 2, 5, 9 \rangle \) is a longest convex subsequence (one of many).
Given an array $A[1..n]$, compute the length of a longest palindrome subsequence of A. Recall that a sequence $B[1..\ell]$ is a palindrome if $B[i] = B[\ell - i + 1]$ for every index i.

For example, given the array

$$(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7)$$

your algorithm should return the integer 7, because $(4, 9, 5, 3, 5, 9, 4)$ is a longest palindrome subsequence (one of many).