Design Turing machines \(M = (Q, \Sigma, \Gamma, \delta, \text{start}, \text{accept}, \text{reject}) \) for each of the following tasks, either by listing the states \(Q \), the tape alphabet \(\Gamma \), and the transition function \(\delta \) (in a table), or by drawing the corresponding labeled graph.

Each of these machines uses the input alphabet \(\Sigma = \{1, \#\} \); the tape alphabet \(\Gamma \) can be any superset of \(\{1, \#, \Box, \triangleright\} \) where \(\Box \) is the blank symbol and \(\triangleright \) is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below.

1. On input \(1^n \), for any non-negative integer \(n \), write \(1^n \#1^n \) on the tape and accept.

2. On input \(\#^n1^m \), for any non-negative integers \(m \) and \(n \), write \(1^m \) on the tape and accept. In other words, delete all the \(\# \)s and shift the \(1 \)s to the start of the tape.

3. On input \(\#1^n \), for any non-negative integer \(n \), write \(\#1^{2n} \) on the tape and accept. (Hint: Modify the Turing machine from problem 1.)

4. On input \(1^n \), for any non-negative integer \(n \), write \(1^{2n} \) on the tape and accept. (Hint: Use the three previous Turing machines as subroutines.)