Proving that a problem \(X \) is NP-hard requires several steps:

- Choose a problem \(Y \) that you already know is NP-hard (because we told you so in class).
- Describe an algorithm to solve \(Y \), using an algorithm for \(X \) as a subroutine. Typically this algorithm has the following form: Given an instance of \(Y \), transform it into an instance of \(X \), and then call the magic black-box algorithm for \(X \).
- **Prove** that your algorithm is correct. This always requires two separate steps, which are usually of the following form:
 - **Prove** that your algorithm transforms “good” instances of \(Y \) into “good” instances of \(X \).
 - **Prove** that your algorithm transforms “bad” instances of \(Y \) into “bad” instances of \(X \). Equivalently: Prove that if your transformation produces a “good” instance of \(X \), then it was given a “good” instance of \(Y \).
- Argue that your algorithm for \(Y \) runs in polynomial time.

1. A Hamiltonian cycle in a graph \(G \) is a cycle that goes through every vertex of \(G \) exactly once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

 A tonian cycle in a graph \(G \) is a cycle that goes through at least half of the vertices of \(G \). Prove that deciding whether a graph contains a tonian cycle is NP-hard.

2. Big Clique is the following decision problem: given a graph \(G = (V, E) \), does \(G \) have a clique of size at least \(n/2 \) where \(n = |V| \) is the number of nodes? Prove that Big Clique is NP-hard.

3. Recall the following \(k \text{COLOR} \) problem: Given an undirected graph \(G \), can its vertices be colored with \(k \) colors, so that every edge touches vertices with two different colors?

 (a) Describe a direct polynomial-time reduction from 3\text{COLOR} to 4\text{COLOR}.

 (b) Prove that \(k \text{COLOR} \) problem is NP-hard for any \(k \geq 3 \).

To think about later:

3. Let \(G \) be an undirected graph with weighted edges. A Hamiltonian cycle in \(G \) is heavy if the total weight of edges in the cycle is at least half of the total weight of all edges in \(G \). Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.