1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:
 - **Input:** A CNF formula \(\varphi \) with \(n \) variables \(x_1, x_2, \ldots, x_n \).
 - **Output:** True if there is an assignment of True or False to each variable that satisfies \(\varphi \).

 Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:
 - **Input:** A CNF formula \(\varphi \) with \(n \) variables \(x_1, \ldots, x_n \).
 - **Output:** A truth assignment to the variables that satisfies \(\varphi \), or \text{NONE} if there is no satisfying assignment.

 [Hint: You can use the magic box more than once.]

2. An **independent set** in a graph \(G \) is a subset \(S \) of the vertices of \(G \), such that no two vertices in \(S \) are connected by an edge in \(G \). Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:
 - **Input:** An undirected graph \(G \) and an integer \(k \).
 - **Output:** True if \(G \) has an independent set of size \(k \), and False otherwise.

 (a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:
 - **Input:** An undirected graph \(G \).
 - **Output:** The size of the largest independent set in \(G \).

 [Hint: You’ve seen this problem before.]

 (b) Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:
 - **Input:** An undirected graph \(G \).
 - **Output:** An independent set in \(G \) of maximum size.
To think about later:

3. Formally, a **proper coloring** of a graph $G = (V, E)$ is a function $c: V \rightarrow \{1, 2, \ldots, k\}$, for some integer k, such that $c(u) \neq c(v)$ for all $uv \in E$. Less formally, a valid coloring assigns each vertex of G a color, such that every edge in G has endpoints with different colors. The **chromatic number** of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision problem *in polynomial time*:

- **INPUT**: An undirected graph G and an integer k.
- **OUTPUT**: **TRUE** if G has a proper coloring with k colors, and **FALSE** otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following **coloring problem** *in polynomial time*:

- **INPUT**: An undirected graph G.
- **OUTPUT**: A valid coloring of G using the minimum possible number of colors.

Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.