1. (100 pts.) MST.

Let G be an undirected graph with n vertices and m edges with weights on the edges (here $m \geq n$). Furthermore, assume that the given weights $w(\cdot)$ on the edges are all distinct.

1.A. (30 pts.) For a path π in the graph, its bottleneck price $\beta(\pi)$ is the maximum weight of an edge on π. Formally, $\beta(\pi) = \max_{e \in \pi} w(e)$. The bottleneck distance for two vertices $u, v \in V(G)$ is $\beta(u, v) = \min_{\pi \in \Pi(u, v)} \beta(\pi)$, where $\Pi(u, v)$ is the set of all paths between u and v in G.

Describe how to build a data-structure, using $O(n)$ space, such that given a query pair of vertices $u, v \in V(G)$, one can compute $\beta(u, v)$ in $O(n)$ time. Describe the query algorithm that computes the distance, and prove its correctness (i.e., that the result it returns is correct). What is the construction time of the data-structure?

[Harder but doable by you. Not for submission (and we will not provide a solution): Show how to build a data-structure that uses $O(n \log n)$ space, and answers such queries in $O(\log n)$ time.]

1.B. (10 pts.) Consider computing the MST T_1 from G, removing the edges of T_1 from G, computing an MST T_2 of the remaining graph, and continuing in this fashion till the graph is disconnected, and let T_1, \ldots, T_k be the extracted spanning trees.

Computing such trees can be useful for robustness – if the first MST fails, you have a tree which is almost as good as backup (i.e., T_2), and so on.

Clearly, this sequence can be computed in $O(k(n \log n + m))$ time (how?). We are interested in a faster algorithm (for example, think about the case that $k = \Omega(\sqrt{n})$).

To this end, let e_1, \ldots, e_m be the edges of G in increasing sorted order by weight. Let $L_1(t) = \{e_1, \ldots, e_t\}$ be the set of the first t edges in this order. Let $F_1(t)$ be the set of edges used by the spanning forest computed by the Kruskal algorithm after inserting the edges of $L_1(t)$.

More generally, for $i > 0$, let $L_{i+1}(t) = L_i(t) \setminus F_i(t)$, and let $F_{i+1}(t)$ be the edges of the spanning forest of $L_{i+1}(t)$ as computed by the Kruskal algorithm when executed on the set of edges $L_{i+1}(t)$.

Prove that $F_1(m), \ldots, F_k(m)$ are the edges of the trees T_1, \ldots, T_k, respectively.

1.C. (10 pts.) In the context of (B), prove that, if two vertices u, v are in the same connected component of the graph $(V, F_i(t))$, for some time i, then they are in the same connected component of $(V, F_j(t))$, for all $j < i$.

1.D. (20 pts.) Let $D(t)$ be the union-find data-structure used by the Kruskal algorithm, defined over the $V(F_i(t))$, after handling the edges of $L_i(t)$. Assume that you have $D_1(t), D_2(t), \ldots$, and the edge $e_{i+1} = u_{i+1}'v_{i+1}'$. Show how to compute, in $O(\alpha(n) \log n)$ time, the minimal index $j > 0$, such that the two vertices u_{i+1}' and v_{i+1}' of e_{i+1} appear in two different connected components of $F_j(t)$.

Here, assume $\alpha(n)$ is a bound on the time it takes to perform a single operation in the union-find data-structure.

1.E. (30 pts.) Using the above, show how to compute the spanning trees T_1, \ldots, T_k, from part (B), in $O(m \alpha(n) \log n)$ time. Be careful about the details – the value of k is not given to you, and you might need to create new sets (of a single element) in the union-find data-structures on the fly.

Do not use hashing or dictionary data-structures in solving this problem.
(100 pts.) Undecidable.

For each of the following languages, either prove that it is undecidable (by providing a detailed reduction from a known undecidable language), or describe an algorithm that decides this language – your description of the algorithm should be detailed and self contained. (Note, that you cannot use Rice Theorem in solving this problem.)

2.A. (25 pts.) \(L_1 = \{\langle D, N \rangle | L(D) = L(N) \}, \) where \(D \) is a DFA, and \(N \) is an NFA

2.B. (25 pts.) \(L_2 = \{\langle M, D \rangle | L(M) = L(D) \}, \) where \(M \) is a Turing machine, and \(D \) is a DFA

2.C. (25 pts.) \(L_3 = \{\langle D \rangle | L(D) \text{ is finite} \}, \) where \(D \) is a DFA.

2.D. (25 pts.) \(L_4 = \{\langle M \rangle | L(M) \text{ is finite} \}, \) where \(M \) is a Turing machine.