1. Let L be an arbitrary regular language.
 - Prove that the language $\text{palin}(L)\{w \mid ww^R \in L\}$ is also regular.
 - Prove that the language $\text{drome}(L)\{w \mid w^Rw \in L\}$ is also regular.

2. Suppose F is a fooling set for a language L. Argue that F cannot contain two distinct string x, y where both are not prefixes of strings in L.

3. Prove that the language $\{0^i1^j \mid \gcd(i, j) = 1\}$ is not regular.

4. Consider the language $L = \{w : |w| = 1 \mod 5\}$. We have already seen that this language is regular. Prove that any DFA that accepts this language needs at least 5 states.

5. Consider all regular expressions over an alphabet Σ. Each regular expression is a string over a larger alphabet $\Sigma' = \Sigma \cup \{\emptyset\text{-Symbol}, \epsilon\text{-Symbol}, +, (,)\}$. We use \emptyset-Symbol and ϵ-Symbol in place of \emptyset and ϵ to avoid confusion with overloading; technically one should do it with $+, (,)$ as well. Let R_Σ be the language of regular expressions over Σ.
 1. Prove that R_Σ is not regular.
 2. Prove that R_Σ is a CFL by giving a CFG for it.

6. 1. Prove that the following languages are not regular by providing a fooling set. You need to prove an infinite fooling set and also prove that it is a valid fooling set.
 (a) $L = \{0^k1^kw \mid 0 \leq k \leq 3, w \in \{0, 1\}^+\}$.
 (b) Recall that a block in a string is a maximal non-empty substring of identical symbols. Let L be the set of all strings in $\{0, 1\}^*$ that contain two blocks of 0s of equal length. For example, L contains the strings 01101111 and 01001011100010 but does not contain the strings 000110011011 and 0000000111.
 (c) $L = \{0^{n^3} \mid n \geq 0\}$.
 2. Suppose L is not regular. Show that $L \cup L'$ is not regular for any finite language L'. Give a simple example to show that $L \cup L'$ is regular when L' is infinite.

7. Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
 1. $\{a^ib^jc^kd^\ell \mid i, j, k, \ell \geq 0 \text{ and } i + \ell = j + k\}$.
 2. $L = \{0, 1\}^* \setminus \{0^n1^n \mid n \geq 0\}$. In other words the complement of the language $\{0^n1^n \mid n \geq 0\}$.

8. Let $L = \{0^i1^j2^k \mid k = 2(i + j)\}$.
 1. Prove that L is context free by describing a grammar for L.
 2. Prove that your grammar is correct. You need to prove that if $L \subseteq L(G)$ and $L(G) \subseteq L$ where G is your grammar from the previous part.
Solved problem

Let L be the set of all strings over \{0,1\} * with exactly twice as many 0s as 1s.

9.A. Describe a DFA for the language L.

(Hint: For any string u define $\Delta(u) = \#(0,u) - 2\#(1,u)$. Introduce intermediate variables that derive strings with $\Delta(u) = 1$ and $\Delta(u) = -1$ and use them to define a non-terminal that generates L.)

Solution: $S \to \varepsilon \mid SS \mid 00S1 \mid 0S1S0 \mid 1S00$

9.B. Prove that your grammar G is correct. As usual, you need to prove both $L \subseteq L(G)$ and $L(G) \subseteq L$.

(Hint: Let $u_{\leq i}$ denote the prefix of u of length i. If $\Delta(u) = 1$, what can you say about the smallest i for which $\Delta(u_{\leq i}) = 1$? How does u split up at that position? If $\Delta(u) = -1$, what can you say about the smallest i such that $\Delta(u_{\leq i}) = -1$?)

Solution: We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:

Claim 3.1. $L(G) \subseteq L$, that is, every string in $L(G)$ has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0,u) - 2\#(1,u)$. We need to prove that $\Delta(w) = 0$ for every string $w \in L(G)$.

Let w be an arbitrary string in $L(G)$, and consider an arbitrary derivation of w of length k. Assume that $\Delta(x) = 0$ for every string $x \in L(G)$ that can be derived with fewer than k productions.\(^1\) There are five cases to consider, depending on the first production in the derivation of w.

- If $w = \varepsilon$, then $\#(0,w) = \#(1,w) = 0$ by definition, so $\Delta(w) = 0$.
- Suppose the derivation begins $S \to SS \to^* w$. Then $w = xy$ for some strings $x,y \in L(G)$, each of which can be derived with fewer than k productions. The inductive hypothesis implies $\Delta(x) = \Delta(y) = 0$. It immediately follows that $\Delta(w) = 0$.\(^2\)
- Suppose the derivation begins $S \to 00S1 \to^* w$. Then $w = 00x1$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \to 1S00 \to^* w$. Then $w = 1x00$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \to 0S1S1 \to^* w$. Then $w = 0x1y0$ for some strings $x,y \in L(G)$. The inductive hypothesis implies $\Delta(x) = \Delta(y) = 0$. It immediately follows that $\Delta(w) = 0$.

In all cases, we conclude that $\Delta(w) = 0$, as required.

Claim 3.2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0,u) - 2\#(1,u)$. For any string u and any integer $0 \leq i \leq |u|$, let u_i denote the ith symbol in u, and let $u_{\leq i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates every binary string x that is shorter than w and has twice as many 0s as 1s. There are two cases to consider:

- If $w = \varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \to \varepsilon$.

\(^1\)Alternatively: Consider the shortest derivation of w, and assume $\Delta(x) = 0$ for every string $x \in L(G)$ such that $|x| < |w|$.

\(^2\)Alternatively: Suppose the shortest derivation of w begins $S \to SS \to^* w$. Then $w = xy$ for some strings $x,y \in L(G)$. Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction hypothesis implies \ldots. We need some way to deal with the decompositions $w = \varepsilon \bullet w$ and $w = w \bullet \varepsilon$, which are both consistent with the production $S \to SS$, without falling into an infinite loop.
• Suppose \(w \) is non-empty. To simplify notation, let \(\Delta_i = \Delta(w_{\leq i}) \) for every index \(i \), and observe that \(\Delta_0 = \Delta_{|w|} = 0 \). There are several subcases to consider:

- Suppose \(\Delta_i = 0 \) for some index \(0 < i < |w| \). Then we can write \(w = xy \), where \(x \) and \(y \) are non-empty strings with \(\Delta(x) = \Delta(y) = 0 \). The induction hypothesis implies that \(x, y \in L(G) \), and thus the production rule \(S \rightarrow SS \) implies that \(w \in L(G) \).

- Suppose \(\Delta_i > 0 \) for all \(0 < i < |w| \). Then \(w \) must begin with \(00 \), since otherwise \(\Delta_1 = -2 \) or \(\Delta_2 = -1 \), and the last symbol in \(w \) must be \(1 \), since otherwise \(\Delta_{|w|-1} = -1 \). Thus, we can write \(w = 00x1 \) for some binary string \(x \). We easily observe that \(\Delta(x) = 0 \), so the induction hypothesis implies \(x \in L(G) \), and thus the production rule \(S \rightarrow 00S1 \) implies \(w \in L(G) \).

- Suppose \(\Delta_i < 0 \) for all \(0 < i < |w| \). A symmetric argument to the previous case implies \(w = 1x00 \) for some binary string \(x \) with \(\Delta(x) = 0 \). The induction hypothesis implies \(x \in L(G) \), and thus the production rule \(S \rightarrow 1S00 \) implies \(w \in L(G) \).

- Finally, suppose none of the previous cases applies: \(\Delta_i < 0 \) and \(\Delta_j > 0 \) for some indices \(i \) and \(j \), but \(\Delta_i \neq 0 \) for all \(0 < i < |w| \).

 Let \(i \) be the smallest index such that \(\Delta_i < 0 \). Because \(\Delta_j \) either increases by 1 or decreases by 2 when we increment \(j \), for all indices \(0 < j < |w| \), we must have \(\Delta_j > 0 \) if \(j < i \) and \(\Delta_j < 0 \) if \(j \geq i \).

 In other words, there is a unique index \(i \) such that \(\Delta_{i-1} > 0 \) and \(\Delta_i < 0 \). In particular, we have \(\Delta_1 > 0 \) and \(\Delta_{|w|-1} < 0 \). Thus, we can write \(w = 0x1y0 \) for some binary strings \(x \) and \(y \), where \(|0x1| = i \).

 We easily observe that \(\Delta(x) = \Delta(y) = 0 \), so the inductive hypothesis implies \(x, y \in L(G) \), and thus the production rule \(S \rightarrow 0S1S0 \) implies \(w \in L(G) \).

In all cases, we conclude that \(G \) generates \(w \).

Together, Claim 1 and Claim 2 imply \(L = L(G) \).

Rubric: 10 points:
- part (a) = 4 points. As usual, this is not the only correct grammar.
- part (b) = 6 points = 3 points for \(\subseteq \) + 3 points for \(\supseteq \), each using the standard induction template (scaled).