Solved problem

1. **C comments** are the set of strings over alphabet $\Sigma = \{\ast, /, A, \square \langle \text{Enter} \rangle\}$ that form a proper comment in the C program language and its descendants, like C++ and Java. Here $\langle \text{Enter} \rangle$ represents the newline character, \square represents any other whitespace character (like the space and tab characters), and A represents any non-whitespace character other than \ast or $/$.\(^1\) There are two types of C comments:

- Line comments: Strings of the form $// \cdots \langle \text{Enter} \rangle$.
- Block comments: Strings of the form $/\ast \cdots /$.

Following the C99 standard, we explicitly disallow nesting comments of the same type. A line comment starts with $//$ and ends at the first $\langle \text{Enter} \rangle$ after the opening $//$.

A block comment starts with $/$ and ends at the first \ast completely after the opening $/\ast$; in particular, every block comment has at least two \asts. For example, each of the following strings is a valid C comment:

- $/\ast\ast\ast/$
- $//\square/\square \langle \text{Enter} \rangle$
- $/\ast//\square\ast\square \langle \text{Enter} \rangle \ast \ast \ast$
- $/\ast\square/\square \langle \text{Enter} \rangle \square \ast$

On the other hand, *none* of the following strings is a valid C comments:

- $/\ast/$
- $//\square/\square \langle \text{Enter} \rangle \square \langle \text{Enter} \rangle$
- $/\ast\square/\ast\square/\square \ast \ast$

1.A. Describe a DFA that accepts the set of all C comments.

1.B. Describe a DFA that accepts the set of all strings composed entirely of blanks (\square), newlines ($\langle \text{Enter} \rangle$), and C comments.

You must explain in English how your DFAs work. Drawings or formal descriptions without English explanations will receive no credit, even if they are correct.

\(^1\)The actual C commenting syntax is considerably more complex than described here, because of character and string literals.

- The opening $/\ast$ or $//$ of a comment must not be inside a string literal (\cdots) or a (multi)-character literal (\’\cdots\’).
- The opening double-quote of a string literal must not be inside a character literal (\”\” or a comment.
- The closing double-quote of a string literal must not be escaped (\"\")
- The opening single-quote of a character literal must not be inside a string literal (\’\’\’\’ or a comment.
- The closing single-quote of a character literal must not be escaped (\’\’)
Solution:

1.A. The following eight-state DFA recognizes the language of C comments. All missing transitions lead to a hidden reject state.

The states are labeled mnemonically as follows:
- **s** We have not read anything.
- **/** We just read the initial `/`
- **//** We are reading a line comment.
- **L** We have read a complete line comment.
- **/*** We are reading a block comment, and we did not just read a `*` after the opening `/`
- **/** We are reading a block comment, and we just read a `*` after the opening `/`
- **A** We have read a complete block comment.

1.B. By merging the accepting states of the previous DFA with the start state and adding white-space transitions at the start state, we obtain the following six-state DFA. Again, all missing transitions lead to a hidden reject state.

A backslash escapes the next symbol if and only if it is not itself escaped (`\`\`) or inside a comment.

For example, the string `"/ * \" */ */ */ */ */ /` is a valid string literal (representing the 5-character string `/"\"*/`, which is itself a valid block comment) followed immediately by a valid block comment. For this homework question, just pretend that the characters ``, `\`, and `\` don’t exist.

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other languages, like OCaml, explicitly allow nesting block comments.
The states are labeled mnemonically as follows:

- **s** We are between comments.
- **/** We just read the initial / of a comment.
- **//** We are reading a line comment.
- **/*** We are reading a block comment, and we did not just read a * after the opening /*.
- **/** We are reading a block comment, and we just read a * after the opening /*.

Rubric: 10 points = 5 for each part, using the standard DFA design rubric (scaled)

Rubric: [DFA design] For problems worth 10 points:

- 2 points for an unambiguous description of a DFA, including the states set Q, the start state s, the accepting states A, and the transition function δ.
 - **For drawings:** Use an arrow from nowhere to indicate s, and doubled circles to indicate accepting states A. If $A = \emptyset$, say so explicitly. If your drawing omits a reject state, say so explicitly. **Draw neatly!** If we can’t read your solution, we can’t give you credit for it.
 - **For text descriptions:** You can describe the transition function either using a 2d array, using mathematical notation, or using an algorithm.
 - **For product constructions:** You must give a complete description of the states and transition functions of the DFAs you are combining (as either drawings or text), together with the accepting states of the product DFA.

- **Homework only:** 4 points for briefly and correctly explaining the purpose of each state in English. This is how you justify that your DFA is correct.
 - For product constructions, explaining the states in the factor DFAs is enough.
 - **Deadly Sin:** (Declare your variables.) No credit for the problem if the English description is missing, even if the DFA is correct.

- 4 points for correctness. (8 points on exams, with all penalties doubled)
 - −1 for a single mistake: a single misdirected transition, a single missing or extra accept state, rejecting exactly one string that should be accepted, or accepting exactly one string that should be accepted.
 - −2 for incorrectly accepting/rejecting more than one but a finite number of strings.
 - −4 for incorrectly accepting/rejecting an infinite number of strings.

- DFA drawings with too many states may be penalized. DFA drawings with significantly too many states may get no credit at all.

- Half credit for describing an NFA when the problem asks for a DFA.