
CS/ECE 374 ] Spring 2017

Y Homework 8 Z
Due Wednesday, April 5, 2017 at 10am

Groups of up to three people can submit joint solutions. Each problem should be submitted
by exactly one person, and the beginning of the homework should clearly state the Gradescope
names and email addresses of each group member. In addition, whoever submits the homework
must tell Gradescope who their other group members are.

The following unnumbered problems are not for submission or grading. No solutions for them
will be provided but you can discuss them on Piazza.

• In the lab you saw how to compute s-t shortest walks efficiently when the graph has a
single negative length edge. The running time is asymptotically the same as using Dijkstra’s
algorithm. Generalize this to the setting where the graph has two negative length edges.

• See HW 8 problems from Fall 2016 available at https://courses.engr.illinois.edu/cs374/
fa2016/homework/hw8.pdf.

• Given a directed graph G = (V, E) with non-negative edge lengths, and two nodes s, t, the
bottlenect length of a path P from s to t is the maximum edge length on P. The bottleneck
distance from s to t is defined to be the smallest bottleneck path legnth among all paths
from s to t. Describe an algorithm to compute the bottleneck shortest path distances from
s to every node in G by adapting Dijkstra’s algorithm. Can you also do it via a reduction to
the standard shortest path problem?

1. Let G = (V, E) be a connected directed graph with non-negative edge weights, let s and t
be vertices of G, and let H be a subgraph of G obtained by deleting some edges. Suppose
we want to reinsert exactly one edge from G back into H, so that the shortest path from s
to t in the resulting graph is as short as possible. Describe and analyze an algorithm that
chooses the best edge to reinsert. Ideally the running time of your algorithm should be
asymptotically the same as that of running Dijkstra’s algorithm.

2. Let G = (V, E) be a directed graph. Describe a linear-time algorithm that given G, a node
s ∈ V and an integer k decides whether there is a walk in G starting at s that visits at least
k distinct nodes. The following questions may help you.

• What is the answer if G is strongly connected?

• How would you solve the problem if G is a DAG?

3. Let G = (V, E) a directed graph with non-negative edge lengths. Let R ⊂ E and B ⊂ E be
red and blue edges (the rest are not colored). Given s, t and integers hr and hb describe
an efficient algorithm to find the length of a shortest s-t path that contains at most hr red
edges and at most hb blue edges.

https://courses.engr.illinois.edu/cs374/fa2016/homework/hw8.pdf
https://courses.engr.illinois.edu/cs374/fa2016/homework/hw8.pdf


CS/ECE 374 Homework 8 (due April 5) Spring 2017

Solved Problem

4. Although we typically speak of “the” shortest path between two nodes, a single graph could
contain several minimum-length paths with the same endpoints.

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5

14

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5

14 14 14

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. You
may assume that all edge weights are positive and that all necessary arithmetic operations
can be performed in O(1) time.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all edges
that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u�v tight if dist(u) +w(u�v) = dist(v).
Every edge in a shortest path from s to t must be tight. Conversely, every path from s to t
that uses only tight edges has total length dist(t) and is therefore a shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V + E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains only
to count the number of paths from s to t in H.

For any vertex v, let PathsToT(v) denote the number of paths in H from v to t; we need
to compute PathsToT(s). This function satisfies the following simple recurrence:

PathsToT(v) =







1 if v = t
∑

v�w

PathsToT(w) otherwise

In particular, if v is a sink but v 6= t (and thus there are no paths from v to t), this
recurrence correctly gives us PathsToT(v) =

∑

∅= 0.

We can memoize this function into the graph itself, storing each value PathsToT(v) at
the corresponding vertex v. Since each subproblem depends only on its successors in H, we
can compute PathsToT(v) for all vertices v by considering the vertices in reverse topological
order, or equivalently, by performing a depth-first search of H starting at s. The resulting
algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the
preprocessing phase, which runs in O(E log V) time. �

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for
the path-counting algorithm (standard dynamic programming rubric)

2


