
CS/ECE 374] Spring 2017

Y Homework 5 Z
Due Wednesday, March 8, 2017 at 10am

Groups of up to three people can submit joint solutions. Each problem should be submitted
by exactly one person, and the beginning of the homework should clearly state the Gradescope
names and email addresses of each group member. In addition, whoever submits the homework
must tell Gradescope who their other group members are.

The following unnumbered problems are not for submission or grading. No solutions for them
will be provided but you can discuss them on Piazza.

• Given an array of n unsorted integers A and k ranks i1 < i2 < . . .< ik describe an algorithm
that outputs the elements in A with these given k ranks. Your algorithm should run in
O(n log k) time. One can easily do this via sorting in O(n log n) time. There is also an
O(nk) time algorithm (how?).

• Problems in Jeff’s notes on dynamic programming. In particular, Probs 1, 2, 3, 5, 6.

• Problems in Dasgupta etal book Chapter 6. In particular Probs 1, 2

• Problems in Kleinberg-Tardos book Chapter 6. Problems 1, 2, 7.

1. Let w ∈ Σ∗ be a string. We say that u1, u2, . . . , uh where each ui ∈ Σ∗ is a valid split of w iff
w= u1u2 . . . uh (the concatenation of u1, u2, . . . , uh). Given a valid split u1, u2, . . . , uh of w
we define its `3 measure as

∑h
i=1 |ui|3.

Given a language L ⊆ Σ∗ a string w ∈ L∗ iff there is a valid split u1, u2, . . . , uh of w such
that each ui ∈ L; we call such a split an L-valid split of w. Assume you have access to
a subroutine IsStringInL(x) which outputs whether the input string x is in L or not. To
evaluate the running time of your solution you can assume that each call to IsStringInL()
takes constant time.

Describe an efficient algorithm that given a string w and access to a language L via
IsStringInL(x) outputs an L-valid split of w with minimum `3 measure if one exists.

2. Recall that a palindrome is any string that is exactly the same as its reversal, like I, or
DEED, or RACECAR, or AMANAPLANACATACANALPANAMA.
Any string can be decomposed into a sequence of palindrome substrings. For example, the
string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes in
the following ways (among many others):

BUB •BASEESAB •ANANA
B •U •BB •A •SEES •ABA •NAN •A
B •U •BB •A •SEES •A •B •ANANA

B •U •B •B •A •S •E •E •S •A •B •ANA •N •A

CS/ECE 374 Homework 5 (due March 8) Spring 2017

Describe and analyze an efficient algorithm that given a string w and an integer k decides
whether w can be split into palindromes each of which is of length at least k. For example,
given the input string BUBBASEESABANANA and 3 your algorithm would answer yes
because one can find a split BUB • BASEESAB • ANANA. The answer should be no if we
set k = 4. Note that the answer is always yes for k = 1.

3. The McKing chain wants to open several restaurants along Red street in Shampoo-Banana.
The possible locations are at L1, L2, . . . , Ln where Li is at distance mi meters from the
start of Red street. Assume that the street is a straight line and the locations are in
increasing order of distance from the starting point (thus 0 ≤ m1 < m2 < . . . < mn).
McKing has collected some data indicating that opening a restaurant at location Li will
yield a profit of pi independent of where the other restaurants are located. However, the
city of Shampoo-Banana has a zoning law which requires that any two McKing locations
should be D or more meters apart. Describe an algorithm that McKing can use to figure
out the maximum profit it can obtain by opening restaurants while satisfying the city’s
zoning law.

Solved Problem

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both
shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Given three strings A[1 .. m], B[1 .. n], and C[1 .. m+n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Solution: We define a boolean function Shuf(i, j), which is True if and only if the prefix
C[1 .. i + j] is a shuffle of the prefixes A[1 .. i] and B[1 .. j]. This function satisfies the
following recurrence:

Shuf(i, j) =































True if i = j = 0

Shuf(0, j − 1)∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i − 1,0)∧ (A[i] = C[i]) if i > 0 and j = 0
�

Shuf(i − 1, j)∧ (A[i] = C[i + j])
�

∨
�

Shuf(i, j − 1)∧ (B[j] = C[i + j])
�

if i > 0 and j > 0

2

CS/ECE 374 Homework 5 (due March 8) Spring 2017

We need to compute Shuf(m, n).

We can memoize all function values into a two-dimensional array Shuf[0 .. m][0 .. n].
Each array entry Shuf[i, j] depends only on the entries immediately below and immediately
to the right: Shuf[i − 1, j] and Shuf[i, j − 1]. Thus, we can fill the array in standard
row-major order. The original recurrence gives us the following pseudocode:

Shuffle?(A[1 .. m], B[1 .. n], C[1 .. m+ n]):
Shuf[0,0]← True
for j← 1 to n

Shuf[0, j]← Shuf[0, j − 1]∧ (B[j] = C[j])
for i← 1 to n

Shuf[i, 0]← Shuf[i − 1,0]∧ (A[i] = B[i])
for j← 1 to n

Shuf[i, j]← False
if A[i] = C[i + j]

Shuf[i, j]← Shuf[i, j]∨ Shuf[i − 1, j]
if B[i] = C[i + j]

Shuf[i, j]← Shuf[i, j]∨ Shuf[i, j − 1]

return Shuf[m, n]

The algorithm runs in O(mn) time. �

Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required.
Max 7 points for a slower polynomial-time algorithm; scale partial credit accordingly.

3

CS/ECE 374 Homework 5 (due March 8) Spring 2017

Standard dynamic programming rubric. For problems worth 10 poins:

• 6 points for a correct recurrence, described either using mathematical notation
or as pseudocode for a recursive algorithm.

+ 1 point for a clear English description of the function you are trying to
evaluate. (Otherwise, we don’t even know what you’re trying to do.)
Automatic zero if the English description is missing.

+ 1 point for stating how to call your function to get the final answer.

+ 1 point for base case(s). −½ for one minor bug, like a typo or an off-by-one
error.

+ 3 points for recursive case(s). −1 for each minor bug, like a typo or an off-
by-one error. No credit for the rest of the problem if the recursive
case(s) are incorrect.

• 4 points for details of the dynamic programming algorithm

+ 1 point for describing the memoization data structure

+ 2 points for describing a correct evaluation order; a clear picture is usually
sufficient. If you use nested loops, be sure to specify the nesting order.

+ 1 point for time analysis

• It is not necessary to state a space bound.

• For problems that ask for an algorithm that computes an optimal structure—such
as a subset, partition, subsequence, or tree—an algorithm that computes only
the value or cost of the optimal structure is sufficient for full credit, unless the
problem says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic
programming algorithm, but iterative psuedocode is not required for full
credit. If your solution includes iterative pseudocode, you do not need to
separately describe the recurrence, memoization structure, or evaluation order.
(But you still need to describe the underlying recursive function in English.)

• Official solutions will provide target time bounds. Algorithms that are faster than
this target are worth more points; slower algorithms are worth fewer points,
typically by 2 or 3 points (out of 10) for each factor of n. Partial credit is scaled
to the new maximum score, and all points above 10 are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because
when we have included them, significantly more students turned in algorithms
that meet the target time bound but didn’t work (earning 0/10) instead of correct
algorithms that are slower than the target time bound (earning 8/10).

4

