Final: Monday, December 18, 8-11am, 2017

Name:
NetID:
Name on Gradescope:

• Don’t panic!
• If you brought anything except your writing implements, your double-sided handwritten (in the original) 8½" × 11' cheat sheet, and your university ID, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.
  – Submit your cheat sheet together with your exam. An exam without your cheat sheet attached to it will not be graded.
  – If you are NOT using a cheat sheet, please indicate so in large friendly letters on this page.
• Best answer. Choose best possible choice if multiple options seems correct to you – for algorithms, faster is always better.
• Please ask for clarification if any question is unclear.
• This exam lasts 170 minutes.
• Fill your answers in the Scantron form using a pencil. We also recommend you circle/mark your answer in the exam booklet.
• Please return all paper with your answer booklet: your cheat sheet, and all scratch paper. We will not return the cheat sheet.
• Do not fill more than one answer on the Scantron form – such answers would not be graded. Also, fill your answer once you are sure of your answer – erasing an answer might make the form unscannable.
• Good luck!

Before doing the exam...

• Fill your name and netid in the back of the Scantron form, and also on the top of this page.
• Fill in the pattern shown on the right in the Scantron form.

This encodes which version of the exam you are taking, so that we can grade it.
1. (3 points) The number of regular languages, over the alphabet \( \{0, 1\} \), is
   (A) uncountable.
   (B) undecidable.
   (C) \( 2^\mathbb{R} = \mathbb{N}_2 \).
   (D) countable.
   (E) None of the other answers are correct.

2. (3 points) Consider the recurrence \( f(n) = f\left(\lfloor n/3 \rfloor\right) + f\left(\lfloor n/2 \rfloor\right) + O(n) \), where \( f(n) = O(1) \) if \( n < 10 \). The solution to this recurrence is
   (A) \( O(n^2) \).
   (B) \( O(n) \).
   (C) None of the above.
   (D) \( O(n \log n) \).
   (E) \( O(1) \).

3. (2 points) You are given an unsorted set \( X \) of \( n \) numbers. Deciding if there are two numbers \( x \) and \( y \) in \( X \) such that \( x + y = 0 \) can be solved in (faster is better):
   (A) \( O(n^2) \) time.
   (B) \( O(n) \) time.
   (C) \( O(n^2 \log n) \) time.
   (D) \( O(n^{3/2}) \) time.
   (E) \( O(n \log n) \) time.

4. (3 points) Let \( P_1, \ldots, P_{k+1} \) be \( k + 1 \) decision problems in \( \text{NP} \). Consider a sequence of \( k \) polynomial reductions \( R_1, \ldots, R_k \), where \( R_i \) works in quadratic time in its input size, and is a reduction from \( P_i \) to \( P_{i+1} \). As such, we have that
   (A) If \( P_{k+1} \) is \text{NP-COMPLETE} then \( P_1 \) is \text{NP-COMPLETE} (assuming \( k \) is a constant).
   (B) \( P_1, P_2, \ldots, P_k \) are polynomial time solvable.
   (C) None of the other answers makes any sense. Also, this exam is stupid.
   (D) \( P_1, P_2, \ldots, P_k \) are \text{NP-COMPLETE}.
   (E) If \( P_1 \) is \text{NP-COMPLETE} then \( P_{k+1} \) is \text{NP-COMPLETE} (assuming \( k \) is a constant).
5. (2 points) You are given a set \( I = \{I_1, I_2, \ldots, I_n\} \) of \( n \) weighted intervals on the real line. Consider the problem of computing the maximum weight set \( C \subseteq I \), such that every pair of intervals of \( C \) intersect. This problem
   (A) \textsc{NP-Hard}.
   (B) Can be solved in polynomial time.
   (C) Can be solved in linear time by a greedy algorithm.
   (D) Undecidable.
   (E) \textsc{NP-Complete}.

6. (3 points) Give a \textbf{CNF} formula \( F \) with \( n \) variables, and \( m \) clauses, where every clause has exactly two literals (reminder: a literal is either a variable or its negation). Then, one can compute a satisfying assignment to \( F \) in:
   (A) \( O(n \log n + m) \) time.
   (B) \( O(2^n - 2^m) \) time.
   (C) This is \textbf{Satisfiability} and it can not be solved in polynomial time unless \( P = NP \).
   (D) \( O(n^2 + m^2) \) time.
   (E) \( O(n + m) \) time.

7. (3 points) Let \( B \) be the problem of deciding if the shortest path in a graph between two given vertices is smaller than some parameter \( k \) (where the weights on the edges of the graph are positive). Let \( C \) be the problem of deciding if a given \textbf{CNF} formula is satisfiable. Pick the correct answer out of the following:
   (A) None of the other answers is correct.
   (B) There is a polynomial time reduction from \( C \) to \( B \), but only if \( P \neq NP \).
   (C) There is no relation between the two problems, and no reduction is possible.
   (D) There is a polynomial time reduction from \( B \) to \( C \), but only if \( P = NP \).
   (E) There is a polynomial time reduction from \( B \) to \( C \).

8. (2 points) Consider the following decision problem: Given a directed graph \( G \), and two vertices \( u, v \) in \( G \), is there a path from \( u \) to \( v \) in \( G \)?
This problem has a polynomial length certificate and polynomial time certifier. This claim is
   (A) True.
   (B) False.
9. (3 points) For the language \( L = \{a^nb^n \mid n \geq 0\} \), we have

(A) \( F = \{a^i \mid i \geq 0\} \) is a fooling set for \( L \).
(B) All of the sets suggested are fooling sets.
(C) None of the sets suggested are fooling sets.
(D) \( F = \{a^ib^j \mid i < j\} \) is a fooling set for \( L \).
(E) \( F = \{a^ib^i \mid i \geq 0\} \) is a fooling set for \( L \).

10. (3 points) Given an array \( B[1 \ldots n] \) with \( n \) real numbers (\( B \) is not sorted), consider the problem computing and printing out the smallest \( \lfloor \log_3 n \rfloor \) numbers in \( B \) that are larger than the median number in \( B \) – the numbers should be output in sorted order. This can be done in

(A) \( O(\log^3 n) \) time, and no faster algorithm is possible.
(B) \( O(n) \) time, and no faster algorithm is possible.
(C) \( O(n \log n) \) time, and no faster algorithm is possible.
(D) \( O(\log^4 n) \) time, and no faster algorithm is possible.

11. (3 points) Given an undirected graph \( G \), with \( n \) vertices and \( m \) edges, consider the decision problem of determining if the vertices of \( G \) can be colored (legally) by 2 colors (i.e., no adjacent pair of vertices have the same color). This problem is:

(A) Can be solved in polynomial time.
(B) As hard as the independent set problem.
(C) Solvable in \( O(n + m) \) time.
(D) \textbf{NP-Complete}.
(E) Undecidable.

12. (1 point) There are problems in \textbf{NP} that are solvable in linear time. This statement is

(A) True.
(B) False.

13. (3 points) Given an undirected graph \( G \) with \( n \) vertices and \( m \) edges, and a number \( k \), deciding if \( G \) has a spanning tree with at most \( k \) leaves is

(A) Can be done in polynomial time.
(B) Can be done in \( O(n + m) \) time.
(C) \textbf{NP-Complete}.
(D) Can be done in \( O(n \log n + m) \) time, and there is no faster algorithm.
(E) Can be done in \( O((n + m) \log n) \) time, and there is no faster algorithm.
14. (3 points) You are given a directed graph $G$ with $n$ vertices and $m$ edges. Consider the problem of deciding if there is a closed walk (the walk is allowed to repeat both vertices and edges) that visits all the vertices of $G$.

(A) This problem can be solved in $O(n + m)$ time.
(B) This problem is NP-HARD.
(C) This problem can be solved in $O(nm)$ time, and no faster algorithm is possible.
(D) This problem is NP-COMPLETE.
(E) All of the other answers are correct.

15. (3 points) Consider the problem of checking if a graph has $k$ vertices that are all adjacent to each other. This problem can be solved in

(A) None of the other answers are correct.
(B) Maybe polynomial time – we do not know. Currently fastest algorithm known takes exponential time.
(C) Polynomial time.
(D) It is NP-COMPLETE, so it can not be solved efficiently.

16. (3 points) Let $L_1, L_2 \subseteq \Sigma^*$ be context-free languages. Then the language $L_1 \cap L_2$ is always context-free.

(A) True.
(B) False if the languages $L_1$ and $L_2$ are decidable, and no other answer is correct.
(C) True only if the languages $L_1$ and $L_2$ are decidable, and no other answer is correct.
(D) None of the other answers.
(E) False.

17. (3 points) Consider a CNF formula $F$ with all clauses being of size 2, except for 10 clauses that are of size at most 7 (i.e., these clauses are made out of up to seven literals). Consider the problem of deciding if such a formula is satisfiable. We have:

(A) NP-HARD.
(B) None of the other answers are correct.
(C) Can not be solved in linear time, but can be done in polynomial time.
(D) Can be solved in linear time.
18. (3 points) You are given an NFA $N$ with $n$ states ($N$ might have $\varepsilon$-transitions), with the input alphabet being $\Sigma = \{0, 1\}$. Given a binary string $w \in \Sigma^*$ of length $m$, one can simulate $N$ on a regular computer and decide if $N$ accepts $w$. Which of the following is correct?

(A) This can be done in $O(n^m)$ time, and no faster algorithm is possible.
(B) This problem can not be done in polynomial time, because it is undecidable.
(C) This can be done in $O(2^m n)$ time, and no faster algorithm is possible.
(D) This can done in $O(n^2 m)$ time.
(E) None of the other answers is correct.

19. (3 points) Given $k$ sorted arrays $A_1, A_2, \ldots, A_k$ with a total of $n$ numbers stored in them (all numbers are distinct). Given a number $x$, one can compute the smallest number $y$, in these arrays, that is larger than $x$, in (faster is better)

(A) $O(nk)$ time.
(B) $O(n)$ time.
(C) $O(n \log n)$ time.
(D) $O(k \log n)$ time.
(E) $O(n^2)$ time.

20. (3 points) If a problem is $\text{NP-COMPLETE}$, then it can also be undecidable. This statement is

(A) False if $P = NP$.
(B) True.
(C) False.
(D) None of the other answers.
(E) True if $P = NP$.

21. (3 points) You are given two algorithms $B_Y$ and $B_N$. Both algorithms read an undirected graph $G$ and a number $k$. If $G$ has a vertex cover of size $\leq k$, then $B_Y$ would stop (in polynomial time!) and output YES (if there is no such vertex cover then $B_Y$ might run forever). Similarly, if $G$ does not have a vertex cover of size $\leq k$, then the algorithm $B_N$ would stop in polynomial time, and output NO (if there is such a vertex cover then $B_N$ might run forever).

In such a scenario:

(A) At least two of the other answers are correct.
(B) This would imply that $P \neq NP$.
(C) This would imply that $P = NP$.
(D) Impossible since $P \neq NP$.
(E) One can in polynomial time output if $G$ has a an vertex cover of size $\leq k$ or not.
22. (3 points) For a text file $T$, let $\langle T \rangle$ denote the string that is the content of $T$. Consider the language

$$L = \{ \langle T \rangle \mid T \text{ is a valid java program that can be compiled} \}.$$ 

This language is
(A) Undecidable.
(B) Decidable.
(C) Context-free.
(D) None of the other answers.
(E) Regular.

23. (2 points) Consider an NFA $N$ with $m$ states defined over $\{0, 1\}^*$. There is an equivalent regular expression $r$ (i.e., $L(r) = L(N)$), such that

(A) $r$ is of length at most $O(m \log m)$.
(B) $r$ is of length at most $f(m)$, where $f$ is some function that is not specified in the other answers.
(C) none of other answers are correct.
(D) $r$ is of length at most $O(m)$.

24. (3 points) For the following recurrence (evaluated from top to bottom in this order):

$$f(i, j, k) = \begin{cases} 
1 & \text{if } i < 0 \text{ or } j < 0 \text{ or } k < 0 \\
 f(i - 1, j, k) + 1 & \text{if } i > j \text{ or } i > k \\
 f(i, j - 1, k) + 2 & \text{if } j > k \\
 f(i - 1, j, k) + f(i, j - 1, k) + f(i, j, k - 1) & \text{otherwise.}
\end{cases}$$

Assume that every arithmetic operation takes constant time (even if the numbers involved are large). Computing $f(n, \lfloor n/2 \rfloor, \lfloor n/4 \rfloor)$ can be done in (faster is better):

(A) $O(n^2)$ time, using dynamic programming.
(B) $O(2^n)$.
(C) $O(n \log n)$ time.
(D) $O(n)$ time, by recursion.
(E) $O(n^3)$ time, using dynamic programming.

25. (2 points) For a word $w = w_1w_2 \ldots w_{2m}$, with $w_i \in \{0, 1\}^*$, let $w^{\text{ODD}} = w_1w_3w_5 \ldots w_{2m-1}$. If a language $L$ is a regular language, then the language $L^{\text{ODD}} = \{ w^{\text{ODD}} \mid w \in L \}$ is regular.

(A) False.
(B) True.
26. (3 points) You are given a graph $G$ with $n$ vertices and $m = O(n)$ edges, and with weights on the edges. In addition, you are given the MST tree $T$ of $G$. Next, you are informed that the price of some edge $e$ in the MST $T$ had changed from its current cost (either increased or decreased), to a new cost $\alpha$. Deciding if $T$ is still the MST of the graph with the updated weights can be done in (faster is better):

(A) $O(nm)$ time algorithm, and no faster algorithm is possible.
(B) $O(n)$ time.
(C) $O(1)$ time.
(D) $O(n \log n + m)$ time.
(E) $O(\log n)$ time, after preprocessing the graph in $O(n)$ time.

27. (3 points) Let $\mathcal{PC}$ be the class of all decision problems, for which there is a polynomial time certifier that works in polynomial time, and furthermore, for an input of length $n$, if it is a YES instance, then there is a certificate that is a binary string of length $n^{O(1)}$. We have that:

(A) $\text{NP} \subseteq \mathcal{PC}$.
(B) All the problems in $\mathcal{PC}$ can be solved in polynomial time.
(C) $\mathcal{PC}$ contains some $\text{NP}-\text{COMPLETE}$ problems, but not all of them.
(D) $\text{NP} = \mathcal{PC}$.
(E) None of the other answers is correct.

28. (2 points) You are given a directed graph $G$ with $n$ vertices and $m$ edges, a pair of vertices $u, v$, and a number $t$. Deciding if there is a closed walk, with at most $t$ edges, that includes $u$ and $v$ can be done in

(A) $O(nm)$ time using Bellman-Ford.
(B) $O(n + m)$ time.
(C) None of the other answers is correct.
(D) $O(n \log n + m)$ time.
(E) only exponential time since this problem is $\text{NP}-\text{COMPLETE}$.

29. (3 points) You are given a graph $G$, and vertices $u$ and $v$. Such a pair vertices is \textit{robustly connected}, if they remain connected, even if we remove any single vertex in $G$ (except for $u$ and $v$, naturally). Consider the problem of deciding if $u$ and $v$ are robustly connected.

(A) The problem is $\text{NP-HARD}$.
(B) This problem can be solved in polynomial time.
30. (5 points) A binary string \( s \in \{0, 1\}^* \) is \( k \)-balanced if \( \left| \#(0, s) - \#(1, s) \right| \leq k \), where \( k \) is a prespecified parameter. For a string \( w \in \{0, 1\}^* \) and parameters \( k \) and \( h \), a split \( u_1, u_2, \ldots, u_\ell \) is a \( (k, h) \)-valid split of \( w \) iff:

(I) For all \( i, u_i \in \{0, 1\}^\ast \).

(II) For all \( i, u_i \) is \( k \)-balanced.

(III) \( w = u_1u_2\ldots u_\ell \) (i.e., \( w \) is the concatenation of \( u_1, u_2, \ldots, u_\ell \)),

(IV) \( \ell \leq h \).

Given as input a string \( w \in \{0, 1\}^* \) of length \( m \), and parameters \( k \) and \( h \), an algorithm can decide if there is a \( (k, h) \)-valid split of \( w \) in (faster is better):

(A) \( O(m^3k) \) time.

(B) \( O(m^4) \).

(C) \( O(m^3h) \) time.

(D) \( O(m^2h) \) time.

(E) \( O(m^2k) \) time.

31. (3 points) You are given a directed graph \( G \) with \( n \) vertices, \( m \) edges, and positive weights on the vertices (but not on the edges). In addition, you are given two vertices \( u \) and \( v \). The weight of a path \( \pi \) is the total weight of the vertices of \( \pi \).

Consider the problem of computing the lightest path connecting a vertex \( u \) to a vertex \( v \). This problem is

(A) Solvable in \( O(n \log n + m) \) time.

(B) Polynomially equivalent to Hamiltonian path.

(C) Undecidable.

(D) Solvable in \( O(n + m) \) time.

(E) NP-HARD.

32. (3 points) Given two NFAs \( N_1 \) and \( N_2 \) with \( n_1 \) and \( n_2 \) states, respectively. Then there is a DFA \( M \) that accepts the language \( L(N_1) \cap L(N_2) \).

(A) False.

(B) True, and the number of states of \( M \) is at most \( O(n_1 + n_2) \).

(C) None of the other answers is correct.

(D) True, and the number of states of \( M \) is at most \( n_1n_2 \).

(E) True, and the number of states of \( M \) is at most \( 2^{n_1}2^{n_2} \).
33. (2 points) Consider the language \( L = \{ i^2 \mid i \text{ is prime} \} \). This language is
(A) Context-free.
(B) Decidable.
(C) Regular.
(D) Finite.
(E) Undecidable.

34. (3 points) Let \( G \) be a DAG with weights on its edges (which can be either positive or negative). The DAG \( G \) has \( n \) vertices and \( m \) edges. Computing the shortest path between two vertices in \( G \) can be done in:
(A) This can be done in \( O(n + m) \) time.
(B) This can be solved in \( O(nm) \) time using Bellman-Ford.
(C) This is NP-HARD.
(D) This can be solved in \( O(n \log n + m) \) time using Dijkstra.
(E) This is not defined if there are negative cycles in the graph. As such, it cannot be computed.

35. (3 points) You are given a directed graph \( G \) with \( n \) vertices and \( m \) edges. Deciding if this graph has a simple cycle visiting at least 1000 edges is
(A) Doable in polynomial time (but not linear time).
(B) NP-COMPLETE by a reduction from Hamiltonian path/cycle to this problem.
(C) None of other answers are correct.
(D) Doable in \( O(n + m) \) time.
(E) NP-COMPLETE by a reduction from this problem to Hamiltonian path/cycle.

36. (2 points) Consider a Turing machine (i.e., program) \( M \) that accepts an input \( w \in \Sigma^* \) if and only if there is a DFA that accepts \( w \). Then the language of \( L(M) \) is
(A) context-free.
(B) \( \Sigma^* \).
(C) finite.
(D) undecidable.
(E) not well defined.